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Abstract

Management of water, regionally, nationally and globally will continue to be a priority and complex undertaking. In riverine
systems, biotic components like flora and fauna, play critical roles in filtering water so it is available for human use and
consumption. Preservation of ecosystems and associated ecosystem functions is therefore vital. In highly regulated large river
basins, natural ecosystems are often supported through provision of environmental flows. Flow delivery, however, should be
underpinned by rigorous monitoring to identify and prioritise biotic water requirements. Broadscale monitoring solutions are
thus integral and for woody tree vegetation species, this is can be via measurement of field evapotranspiration, regionally scaled
using remote sensing. However, as there is generally a mismatch between field data collection area and remote sensing pixel
size, new methods are required to proportion tree evapotranspiration based on tree fractional canopy area per pixel. Within,
we present a novel method to derive tree fractional canopy cover (FTCC) at 20 m resolution, in semi-arid and arid floodplain
areas. The method employs LiDAR as a canopy area field measurement proxy (10 m resolution). Sentinel-1 and Sentinel-2,
radar and multispectral imagery, were used in Random forest analysis, undertaken to develop a predictive FTCC model trained
using LiDAR for two regions in the Murray-Darling Basin. A predictor model, combing the results of both regions, was able
to explain between 85-91% of FTCC variation when compared to LIDAR FTCC, output in 10% increments. Development
of this method underpins the advancement of woody vegetation monitoring to inform environmental flow management in the
Murray-Darling Basin. The method and fine scale outputs will also be of value to other catchment management concerns such

as altered catchment water yields related to bushfires and as such, has application to water management worldwide.
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Abstract

Management of water, regionally, nationally and globally will continue to be a priority and complex under-
taking. In riverine systems, biotic components like flora and fauna, play critical roles in filtering water so it
is available for human use and consumption. Preservation of ecosystems and associated ecosystem functions
is therefore vital. In highly regulated large river basins, natural ecosystems are often supported through
provision of environmental flows. Flow delivery, however, should be underpinned by rigorous monitoring
to identify and prioritise biotic water requirements. Broadscale monitoring solutions are thus integral and
for woody tree vegetation species, this is can be via measurement of field evapotranspiration, regionally



scaled using remote sensing. However, as there is generally a mismatch between field data collection area
and remote sensing pixel size, new methods are required to proportion tree evapotranspiration based on
tree fractional canopy area per pixel. Within, we present a novel method to derive tree fractional canopy
cover (FTCC) at 20 m resolution, in semi-arid and arid floodplain areas. The method employs LiDAR as a
canopy area field measurement proxy (10 m resolution). Sentinel-1 and Sentinel-2, radar and multispectral
imagery, were used in Random forest analysis, undertaken to develop a predictive FTCC model trained
using LiDAR for two regions in the Murray-Darling Basin. A predictor model, combing the results of both
regions, was able to explain between 85-91% of FTCC variation when compared to LIDAR FTCC, output in
10% increments. Development of this method underpins the advancement of woody vegetation monitoring
to inform environmental flow management in the Murray-Darling Basin. The method and fine scale outputs
will also be of value to other catchment management concerns such as altered catchment water yields related
to bushfires and as such, has application to water management worldwide.
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Introduction

River basin management continues to challenge humanity worldwide in finding a balance between anthro-
pogenic hydrological water needs and those of the environment (Hoekstra et al. , 2012; Wheeler et al. |
2017; Bouckaert et al. , 2018). Both surface water and groundwater resources continue to diminish via over
abstraction and declining rainfall across many countries, resulting in poor riverine ecological function and
environmental condition (Vérésmarty et al. , 2010; Rolls and Bond, 2017; Bouckaert et al. , 2018). To arrest
environmental decline in Australia’s food-bowl, the Murray-Darling Basin (MDB; Figure 1), the Murray-
Darling Basin Plan was developed to ensure sustainable water use while supporting reliant industries and
the environment (MDBA, 2009).

Recognising the MDB will remain a highly managed system, central to the Murray-Darling Basin Plan is
water for the environment to support and where possible, restore ecological condition to achieve long-term
environmental outcomes in the absence of natural flows (MDBA, 2009). However, prioritising when and
where environmental water is required across the MDB is extremely complex and to a large extent, relies
onin-situ monitoring of ecological assets such as fish, birds and both woody and non-woody vegetation. As
the MDB covers ~“14% of Australia’s land area (or 1,000,000 km?), reliance on in-situ monitoring is not only
costly, it impedes the ability to understand large-scale ecological water requirements and ecological responses.
Remote sensing methods, however, can provide robust broad scale monitoring options, underpinned by in-situ
observations.

Over the last decade, it has become evident that field measurement of water loss from floodplain woody
vegetation via transpiration and evapotranspiration (ET), provides a way to observe forest or woodland
ecological condition and water needs (Doody et al. , 2015; Jarchowet al. , 2017; Wallace et al ., 2019). When
tree water requirements are not met, both transpiration and ET decline in response to tree water saving
adaptations such as stomatal closure to prevent xylem cavitation and tree death (Baird et al. , 2005; Doody et
al. , 2009, 2015). Severity of decline is related to extent of continued water deficit/drought. Broadscale
monitoring of woody vegetation transpiration and ET during drought can highlight tree condition decline
trajectories and inform prioritisation of environmental water over both short and longer timeframes. Similarly,
monitoring tree response to increasing water availability is equally important in a water management context
related to decisions around where and when environmental water should be delivered.

Considerable investigation has demonstrated that remote sensing provides a broadscale means to monitor
woody vegetation water loss via ET (Guerschman et al. , 2009; Glenn et al. , 2011; Mu et al. , 2011). In
particular, MODIS imagery, providing 8-day composite greenness products (normalised difference vegetation



index (NDVI) and enhanced vegetation index (EVI), provides excellent temporal resolution from the year
2000 from which to develop vegetation monitoring solutions (Glenn et al. , 2011; Nagler et al. , 2016).
Evapotranspiration algorithms, such as those developed by Mu (2013), Guerschman (2009) and Nagler
(2016), lend themselves to broadscale ecological monitoring. However, the MODIS spatial scale of 250 m
can be limiting when it comes to calibrating remote sensing outputs within-situ data collected over smaller
scales, as often happens. For example, in the MDB, collection of woody vegetation ET typically occurs using
50 x 50 m plots, with highly heterogenous canopy cover (Doodyet al. , 2015).

To augment development of temporal fine scale remote sensing monitoring methods which are applicable to
ecological vegetation systems worldwide, a method to downscale low spatial resolution ET estimates based on
high spatial resolution FTCC maps requires development. Improved downscaling will reduce the risk of over
or underestimating vegetation ET during the field calibration process and improve large-scale remote sensing
ET estimates. While several fractional vegetation cover products exist in Australia (Guerschman et al. , 2015;
Guerschman and Hill, 2018; DEE, 2019), the information they impart is not suitable to downscale ET, due
to lack of fine scale classification of vegetation cover or discrimination between groundcover vegetation and
trees.

The objective of this study, therefore, was to develop a method to determine fractional tree canopy cover
(FTCC) at a pixel resolution of 20 m. The intent was to provide a fine scale evaluation of the proportion of
tree canopy in each MODIS pixel and field measurement area. Understanding the amount of remote sensing
ET related directly to tree ET (from field measurement) allows improved calibration accuracy between the
two. This in turn, improves broadscale ET estimates used for monitoring, by accounting for heterogenous
canopy cover in each pixel. The innovative method reported, combines radar (Sentinel-1) and multi-spectral
(Sentinel-2) imagery for the first time, to estimate FTCC. Imagery based on LiDAR (Light Detection and
Ranging) data was employed as a surrogate for field canopy cover and used to train and build a model that
can estimate FTCC across large areas of the MDB. Given the paucity of methods to identify and map canopy
cover at fine scales, the research presented within is likely to be important to many aspects of environmental
management and hydrology, specifically catchment water management and improving our understanding of
the underlying hydrological processes related to vegetation presence and absence.

Study area

Two floodplain regions in the southern MDB, Yanga National Park and Barmah National Park (Figure 1),
were selected for this investigation based on local knowledge and availability of LiDAR remote sensing for
training data. Yanga National Park (34°27’S, 143°48’E) forms a large component of the Lower Murrumbidgee
floodplain which lies along a section of the Murrumbidgee River in New South Wales (Doody et al. , 2015).
Barmah National Park (36°00’S, 144°56’E), is located to the south-east of Yanga in the Barmah-Millewa
Forest along the River Murray. Both floodplain systems are composed of the native riparian tree species,
Eucalyptus camaldulensis (River Red Gum) as well asE. largiflorens (Black Box). Notably, Barmah National
Park is home to the largest E. camaldulesis forest in the world and is thus recognised under the Ramsar
Convention (Hale and Butcher, 2011).

Both regions are semi-arid with low annual precipitation with “425 and 323 mm year™' at Barmah and Yanga
respectively (Bureau of Meteorology, 2020), and high evaporative demand (71600 mm year™!; The Long
Paddock, Queensland Government). Austral summers are hot with mean maximum temperature between
31-33°C, while winter is cool with mean maximum temperature of 14-16 ©C (Bureau of Meteorology, 2020).

Method

A 6 x 6 km region of interest (ROI) was selected within each floodplain area to reasonably manage large
data volumes. In summary, remote sensing imagery, including airborne LiDAR, Sentinel-1 and Sentinel-2,



was obtained to develop a method to derive FTCC. LiDAR data was used to provide a three-dimensional
representation of the ROI’s and derive high-resolution FTCC data. Representing in-situ data, the LiDAR
derived FTCC was used to calibrate a Random forest model based on Sentinel-1 and -2. As the Sentinel
dataset is open-access, freely accessible and available globally, the technique can be implemented over regional
or continental scales if training data (direct in-situFTCC measurement, or as here, a LIDAR surrogate) are
available.

LiDAR data

LiDAR (Light Detection And Ranging) remote sensing uses pulsed light waves from an airborne laser to
measure distance of Earth objects from an aircraft via reflectance of light (Dubayah and Drake, 2000). The
returned wavelengths and time combined, allow three dimensional representations of the reflected surface to
be constructed. When LiDAR is collected over natural environments, 3-D reconstruction of canopy structure
provides fine resolution field representation of the study location. Airborne LiDAR data for each ROI was
obtained from ELVIS (https://elevation.fsdf.org.au/), a spatial data portal. Each tile covered 2 km x 2 km.
Acquisition date was September 2009 and 2015 for Yanga and Barmah, respectively, and was performed with
two different LiDAR sensors (Leica ALS50-II -Yanga; Trimble AX60 - Barmah).

The Yanga dataset was collected 0.50 km above the earth surface with a swath width of 1.6 km and swath
overlap of 20%. Similarly, the Barmah dataset was measured at a height of 0.85 km with a swath width of
1 km and swath overlap of 30%. Sensors recorded an average point spacing of around 4.0 and 4.4 points per
m? for Yanga and Barmah, respectively.

Retrieving vegetation height and fractional tree canopy cover from LiDAR data

Tree structural information for both ROIs was retrieved from LiDAR tile data. Each tile includes a dense
collection of ‘points’ based on reflectance time and georeferencing information, such as x and y coordinates,
point heights and point return ‘types’ (related to time each point returns to the sensor and height of the
object). FUSION software (http://forsys.cfr.washington.edu/fusion.html) was implemented to partition a
digital surface model and digital terrain model from the raw LiDAR data (Boehm et al. , 2013). The digital
surface model was applied to approximate elevation of each grid cell. The digital terrain model was used
to estimate elevation of the ground surface. A canopy height model (Koukoulas and Blackburn, 2005) was
created by subtracting the digital terrain model from the digital surface model at 1 m spatial resolution.
The canopy height map was then converted from point clouds to pixels. A FTCC product was derived from
the canopy height model using all LiDAR points reflected from 2 m above the ground surface (referred to
as LIDAR FTCC). As the objective of the study was to map tree canopy cover, smaller shrubs and bushes
were excluded (Equation 1). R package ForestTools was applied to identify dominant treetops and tree crown
radius from the canopy height model. A moving window was created to scan the canopy height model and
tag treetops that depended on the highest point in the window. The ‘watershed” method was implemented
to outline tree crowns (Beucher and Meyer, 1993). Finally, from the canopy height model, tree number was
counted as well as the tree height and crown radius.

FTCC — numbers of pixels (height>2m) (Equation 1)

total pixel numbers at given area

Sentinel-1 data

Sentinel-1A and 1B satellites carry C-band Synthetic Aperture Radar (SAR) sensors. They are part of the
European Space Agency’s Copernicus mission, and were launched in 2014 (Sentinel-1A) and 2016 (Sentinel-
1B). They are the first globally acquiring SAR sensors, providing dual-polarized (VV and VH) C-band SAR
images with a 12-day repeat path frequency. Over land, Interferometric Wide imaging mode is the default
automatic imaging mode, with a nominal sensing resolution of 20 (Azimuth) by 5 m (Range).



A Sentinel-1 Ground Range Detected image acquired in May 2016 was obtained from Sentinel Australia
Regional Access (SASA; https://copernicus.nci.org.au/). Processing was performed with the Sentinel App-
lication Platform (SNAP) and included updating the orbital metadata, thermal noise removal, border noise
removal, calibration, range doppler terrain correction and conversion to decibel (Filipponi, 2019). VV and
VH bands were converted to Sigma Nought backscattering coefficients, which includes a compensation for
Line-Of-Sight variations in Range.

Sentinel-2 data

The Sentinel-2 satellites consist of two satellites, launched in 2015 (Sentinel-2A) and 2017 (Sentinel-2B),
respectively. Each carry multispectral sensors with 13 spectral bands recording visible, near-infrared and
short-wave infrared regions of the electro-magnetic wave spectrum. The revisit time of Sentinel-2 is 10 days.

Sentinel-2 Level 1C (L1C) top-of-atmosphere data with less than 10% cloud cover, collected in May 2016,
was downloaded from SASA. The original tile (100 km x 100 km) was cropped to the ROIs. Sen2cor was
applied to obtain bottom of atmosphere reflectance, converting data from L1C to atmospherically corrected
L2A (Main-Knorn et al. , 2015). Ten bands were selected and these represent vegetation functional and
structural information (Verrelst et al. , 2012). Bands include B2-B8, B8a, and B11-B12 from Sentinel-2. All
bands where relevant, were resampled to 20 m x 20 m (Table 1) .

Random forest regression analysis

Random forest regression, proposed by Breiman (2001), is an assembling machine learning algorithm that
can be applied to high-dimensional spatial dataset analysis. Random forest starts with a random selection
of subset data from a training dataset, then creates decision trees for each sample. A ‘voting” method is then
implemented for the prediction of each decision tree. The most voted prediction is selected as the final result
among all individual decision trees (Gislason et al. , 2006).

Random forest regression was employed to determine the relationship between LIDAR FTCC and Sentinel-1
and Sentinel-2 bands. Before applying the Random forest regression, Sentinel-1 and 2 bands and the canopy
height model were resampled to the same spatial resolution of 20 m. VV and VH bands from Sentinel-1 were
resampled to 20 m based on Sentinel-2 image resolution using bilinear interpolation. In order to retrieve
FTCC from the canopy height model at Sentinel-2 spatial resolution, a 20 m fishnet grid was created. FTCC
was calculated based on equation 1 from the canopy height model for each fishnet grid. With resampling of
Sentinel-1, Sentinel-2 and LiDAR FTCC, 733,800 pixels for both Yanga and Barmah ROIs were created for
Random forest training and validation.

Three models were created using ‘randomForest’ (R package) which included single models trained and
predicated for both the Yanga and Barmah ROIs (RFyanga and RFparman where RF is Random forest)
and a model that combined data from both ROIs (RF,;). For each model, the dataset was split into 70%
training and 30% validation by random sampling. A ten-fold cross-validation was implemented to keep the
best performance of each Random forest model.

Statistical analysis

Root Mean Square Error (RMSE) was applied to analyse the performance of the Random forest predictor
model. The RMSE is defined as;

RMSE = YXisi (Erj\tfﬁ Zore,s)” (Equation 2.)

The z,ct; and zpr.; are LIDAR FTCC and FTCC predicted by the Random forest model, respectively.
N is the number of pixels used for prediction. The coefficient of determination was applied to check the
relationship between LiDAR FTCC and predicted FTCC for the ROIs. Hence, higher R? indicates the



regression model fits the LIDAR FTCC, and lower RMSE indicates better predictions of the Random forest
models. Data processing, statistical analysis and visualisation were conducted in R scientific computation
environment (R core team version 3.6) and associated packages obtained from the comprehensive R archive
network (http://cran.r-project.orj).

Results

Assessment of Random forest models

For the Yanga ROI, there was a moderate correlation between LiDAR FTCC and predicted FTCC (Figure
2a; RFvanga), with the Random forest model underpredicting. The correlation was higher (0.8, p-value <
0.01) at Barmah (Figure 2b; RFparman). The model trained using both Barmah and Yanga data (RF.y),
derived significantly improved results, exhibiting a strong correlation between LiDAR FTCC and predicated
FTCC for both ROT’s (Figure 2¢ and d). The RF,; predictor model could explain 85% of the FTCC variation
for Yanga and 91% for Barmah. The RMSE indicates the accuracy of RF.n was higher than RFyang, and
RFBarman, strongly demonstrating the combined model (RF.n) contains more information than RFvanga and
RFBarman individually.

Prediction of the fractional tree canopy cover for Yanga and Barmah

The percentage of FTCC per 20 m pixel was predicted for both Yanga (Figure 3a) and Barmah (Figure 3d)
ROIs. High FTCC (> 65%) was found along the Murrumbidgee River and around the periphery of ‘Irrigation
Lake’ at Yanga, in both the predicted and LiDAR FTCC images (Figure 3a and b). Low FTCC can be
observed predominantly in the south of the ROI related to bare land and/or low shrubs such asMuehlenbeckia
florulenta (Lignum). The patterns of predicted FTCC and LiDAR FTCC generally showed high consistency,
although areas indicated within the red boxes suggest errors (Figure 3c). These are likely related to a
mismatch between the spatial resolution of the training data (20 m) and LiDAR data (10 m).

Within the Barmah ROI, average FTCC was much higher across the ROI (72%) compared to Yanga (26%)
which is not surprising given the ROI is in the heart of a forested area. Similar to Yanga, predicted FTCC
(Figure 3d) displayed similar patterns to LIDAR FTCC (Figure 3e) when predicted using the RF,; model.
Measurement errors were detected in the LiDAR data (red areas; Figure 3e) which explains the missing
section of river channel in that figure and it’s prominence as an error (yellow pixels) in Figure 3f, which is
not an error of prediction.

Relative importance of remote sensing products in the predictive model

One of the most efficient functions of the Random forest model is to reveal the relative importance of
imaging techniques and bands (spectral for multi-spectral or polarization for SAR) contributing to the
developed predictive models (Fassnacht et al. , 2014). Sentinel-2 band B12, a shortwave infrared band with
a central wavelength of 2202.4 nm (Vaudour et al. , 2019) proved most significant to predict FTCC across
the three independent predictor models (Figure 4). Prior studies note the importance of SWIR with respect
to leaf water content (Tucker, 1980; Han et al. , 2019) and remote sensing. Band B11, another SWIR band,
contributed an average of 51% to the final result (Figure 4), while bands B2, 3, and 4 were all vital to the
RF.imodel, with an average importance of 46%. The contribution of Sentinel-1 bands was less important
than Sentinel-2 bands. However, of note is the ‘cross-polarized’ VH band, which contains information on
complex volume scattering (a typically dominant radar scattering mechanism in tree canopy covers) which
is the most information-rich of the two SAR bands.

SWIR bands are sensitive to variation in leaf area index and leaf water content (Asner and Lobell, 2000;
Ghulam et al. , 2008). SWIR can account for up to 89% of leaf area index variation based on simulations of



a radiative transfer model (Bowyer and Danson, 2004; Wang et al. , 2008). In addition, prior studies have
noted the importance of leaf water thickness variations which are strongly presented in SWIR bands due
to the low absorption of light by water (Asner and Lobell, 2000; Ghulam et al. , 2008). Hence, the obvious
difference of leaf area index and leaf water content for canopy and soil contributes significantly in Random
forest model training.

Considering the lower ranking of the Sentinel-1 bands, the RF,; model was trained without Sentinel-1 bands.
Correlations were weaker than the previous model at Yanga (R? = 0.84, p-value < 0.01) and Barmah (R?
= 0.86, p-value < 0.01), respectively (data not shown). The results suggest that Sentinel-1 bands play an
important role in the Random forest model training to accurately derive FTCC.

Discussion

Understanding vegetation water requirements and losses are important to inform environmental water ma-
nagement and underpin equitable water sharing plans. Given the significant advances in digital technology
and high costs of in-situ monitoring, new innovative cost-effective methods are vital to monitor large land
tracts both in Australia and other regions across the world (Manfreda et al. , 2018). Woody vegetation ET
can provide a line of evidence to improve monitoring and inform water management, however downscaling of
low spatial resolution data is required to provide robust remotely sensed ET estimates. The performance of
the RF,y predictor model presented within, indicates that a model has been developed that can accurately
predict FTCC for both sparse and densely vegetated areas semi-arid and likely arid, floodplain environments.

As mentioned previously, while other fractional vegetation products are available (Guerschman et al. , 2015;
Guerschman and Hill, 2018; DEE, 2019) the classification and spatial resolution of these did not suit the
purpose of improving remotely sensed ET outputs. Guerschman and Hill (2018), for example, provide lands-
cape fractional cover including percent photosynthetic vegetation, non-photosynthetic vegetation and bare
soil across 250 m MODIS pixels. In contrast, the model presented here, provides FTCC in 10% increments
of canopy cover related only to trees.

Important outcomes of method development

LiDAR imagery collected from the regions of interest (Yanga and Barmah National Parks) proved invaluable
to the development of the reported method. LiDAR provides a proxy for field derived canopy cover, against
which Sentinel data was trained. As the LiDAR output is composed of ‘point clouds’ representing 3-D land
surface features, it was possible to separate trees over 2 m in height from other surface features, to provide
‘field-based’ canopy cover. The results, from a remote sensing perspective, are also important to understand
critical bands that are required to monitor vegetation and water to inform future satellite development.

Additional method application

While remote sensing methods can be used to derive FTCC such as aerial imagery (Melville et al. , 2019),
LiDAR (Wasser et al. , 2013) and fine resolution satellite imagery like WorldView2 and 3 (Immitzer et al. ,
2018), acquiring imagery is costly and requires ‘tasking’ (i.e. imagery it is not collected regularly and needs
to be ordered) for specific areas of interest. As a result, national scale imagery is not available and temporal
availability is poor. In comparison, developing a method using open-access Sentinel-1 and -2 imagery, provides
a mechanism to monitor vegetation cover change from 2015 and into the future at desired intervals such as
monthly, seasonally or annually, depending on the application.

The FTCC method, is however, likely to be very valuable to other areas of catchment water management.
The significant bushfires across southern Australia over the summer of 2019/2020 are likely to have significant
future impacts on water resources and especially changes to water yield in both quality and quantity over
the next decade (Brown, 1972; Lee, 2020; Moreno et al. , 2020). The FTCC method would enable accurate



estimates of tree area, pre and post bushfires, to underpin future hydrological catchment yield forecasting.
Current methods are unlikely to be suitable to disentangle woody tree vegetation, which is a dominant water
user, from other vegetation sources. This may lead to errors in water yield estimation pre and post fires.
Tree reduction also increases streamflow locally, although this is quickly reversed as regeneration occurs,
particularly in Australia with bush tolerant native species (Kuczera, 1987; Brookhouse et al. , 2013). There
is an opportunity to link broadscale FTCC predictions with modelling of water fluxes through Land Surface
Models, enabling modelling to understand the effects of fires (or any land cover changes) on hydrologic fluxes
(Barlage and Zeng, 2004; Fang et al. , 2018). As severe bushfires have also featured in other areas around
the world such as the United States and Europe, the method is relevant internationally.

Sources of error

Sentinel data was trained against LIDAR which was collected between 2009-2015. The very high correlation
between LiDAR FTCC and predicted FTCC, provides some confidence that although time has passed,
substantial changes to vegetation crowns were not apparent in the trained areas. As vegetation might have
changed slightly between the training data (LIiDAR) and the covariates (multi-spectral and SAR bands), part
of the error is actually not attributable to FTCC modelling, i.e. the discrepancy between the LiDAR FTCC
and the predicted FTCC represent a maximum error margin. Yanga LiDAR, collected in 2009, occurred
before the break in the Millennium Drought from 1997 to 2009 (Leblanc et al. , 2012), while Barmah LiDAR
was collected after (2015). This might explain the poorer prediction at Yanga using the RFyangamodel as
substantial improvement in tree canopy crowns occurred over the 2010-2012 flood period (Doody et al. ,
2015) leading to a discrepancy between amount of crown cover pre and post flood. The match at Barmah
was likely higher due to closer match between imagery dates (2015 LiDAR and 2016 Sentinel). While the date
gap between Yanga imagery is not ideal, it was suitable for this project, however more recent LIDAR imagery
is preferred. Additional sources of error could have been introduced to the model from use of two different
LiDAR collecting platforms and differences in their acquisition altitudes as well as the spatial mismatch
between 20 m training data and 10 m LiDAR data.

Further research

While the initial method shows considerable promise for widespread application and identification of FTCC,
to scale the method across the MDB, additional areas will need to be trained to incorporate vegetation in
different climate and especially rainfall zones. It is unclear if regions with higher rainfall will fit the RF .y
model, so further investigation is required. The objective moving forward, is to provide a universal model to
predict FTCC across the MDB and examine reducing FTCC resolution further to <10 m. Building further
upon that, will be investigation of the feasibility of producing FTCC timeseries over the period of Sentinel
availability (75 years), focusing on seasonal and annual predictions which will be valuable for monitoring
of temporal vegetation canopy cover change at a fine resolution. As mentioned in relation to bushfire and
water yield research applications, provision of <10 m woody tree canopy cover would substantially improve
vegetation water use estimates based on tree area and aid forecasts of how water yield and hydrologic fluxes
(ET, recharge and runoff) will change into the future.

Conclusions

The aim of the reported study was to predict woody vegetation FTCC at 20 m resolution for floodplain
vegetation and evaluate predictions using LiDAR data. This study has shown that a combining predictor
model was able to explain up to 91% of FTCC variation, returning an acceptable RMSE at our study sites.
Individual models (RFvanga and RFparman) displayed weaker correlations and larger errors when compared
to the combined model. Analysis of sensor band importance suggests SWIR is the most important band
which contributes mostly to model training as it is sensitive to variation in leaf area index and leaf water



content. Additionally, Sentinel-1 (radar) band contributions cannot be ignored for Random forest model
training. Our presented approach will prove useful in expanding knowledge of remote sensing ET related
directly to tree ET, improving estimations at a finer spatial resolution. This study will be significant to
further our collective understanding of floodplain vegetation response to climatic conditions and catchment
water management.
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Table 1. Remote sensing data used to retrieve fractional tree canopy cover. NIR is near-infrared and SWIR
is short-wave infrared.

Spatial resolution

Sensor Bands (m) Acquisition date
Sentinel-1 \AY 20 Yanga 16" May 2016
VH Barmah 11t May 2016
Sentinel-2 B2 blue 10 Yanga 19" May 2016
Barmah 6" May 2016
B3 green 10
B4 red 10

B5 vegetation red edge 20
B6 vegetation red edge 20
B7 vegetation red edge 20

B8 NIR 10
B8A NIR 20
B11 SWIR 20
B12 SWIR 20
Airborne Lidar - 0.23 Yanga 15t Sep 2009

Barmah 10" Sep 2015

Figures captions

Figure 1. The location and climatic context of Yanga National Park and Barmah National Park (image
courtesy of Google Earth on Aug/2018).

Figure 2. Scatterplots showing LIDAR FTCC against predicted FTCC (a) Yanga and (b) Barmah using
individual site-specific models (RFYanga and RFBarmah). The results of predicted FTCC using the model
trained using both Yanga and Barmah data (RFall) are shown in (c) for Yanga and (d) for Barmah. The
blue line indicates the regression line.

Figure 3. Spatial outputs for the Yanga region of interest, mapping (a) predicted fractional tree canopy
cover (FTCC); (b); LIDAR FTCC and (c) the difference between the two images. Similarly, spatial outputs
for the Barmah region of interest, mapping (d) predicted fractional tree canopy cover (FTCC); (e); LiDAR
FTCC and the (f) difference between the two images.

Figure 4. Bands of importance for Sentienl-1 and Sentinel-2 for FTCC estimation for the RFYanga, RF-
Barmah and RFAIl Random forest models. The importance score was scaled between 0.1 and 1.
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