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Abstract

Catchment-scale response functions, such as transit time distribution (T'TD) and evapotranspiration time distribution (ETTD),
are considered fundamental descriptors of a catchment’s hydrologic and ecohydrologic responses to spatially and temporally
varying precipitation inputs. Yet, estimating these functions is challenging, especially in headwater catchments where data
collection is complicated by rugged terrain, or in semi-arid or sub-humid areas where precipitation is infrequent. Hence, we
developed practical approaches for estimating both TTD and ETTD from commonly available tracer flux data in hydrologic
inflows and outflows without requiring continuous observations. Using the weighted wavelet spectral analysis method of Kirchner
and Neal [2013] for 8180 in precipitation and stream water, we specifically calculated TTDs that contribute to streamflow via
spatially and temporally variable flow paths in a sub-humid mountain headwater catchment in Arizona, USA. Our results
indicate that composite T'TDs most accurately represented this system for periods up to approximately one month and that a
Gamma TTD was most appropriate thereafter. The TTD results also suggested that some contribution of subsurface water was
beyond the applicable tracer range. For ETTD and using 5180 as a tracer in precipitation and xylem waters, a Gamma ETTD
type best matched the observations, and stable water isotopes were capable tracers for the majority of vegetation source waters.
This study contributes to a better understanding of a fundamental question in mountain catchment hydrology; namely, how
tracer input fluxes are modulated by spatially and temporally varying subsurface flow paths that support evapotranspiration

and streamflow at multiple time scales.
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