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Abstract

pH is an important factor affecting the growth and production of microorganisms; especially, it is effective on the efficiency of
ethanologenic microorganisms. It can change the ionization state of metabolites via the change in the charge of their functional
groups that may lead to metabolic alteration. Here, we estimated the ionization state of metabolites and balanced the charge
of reactions in genome-scale metabolic models of Saccharomyces cerevisiae, Escherichia coli, and Zymomonas mobilis at pH
levels 5, 6, and 7. The robustness analysis was first implemented to anticipate the effect of proton exchange flux on growth
rates for the constructed metabolic models at various pH. In accordance with previous experimental reports, the models predict
that Z. mobilis is more sensitive to pH rather than S. cerevisiae and the yeast is more regulated by pH rather than E. coli.
Then, a systemic approach was proposed to predict the pH effect on metabolic change and to find effective reactions on ethanol
production in S. cerevisiae. The correlated reactions with ethanol production at predicted optimal pH in a range of proton
exchange rates determined by robustness analysis were identified using the Pearson correlation coefficient. Then, fluxes of these
reactions were applied to cluster the various pHs by principal component analysis and to identify the role of these reactions
on metabolic differentiation because of pH change. Finally, 12 reactions were selected for up and down-regulation to improve
ethanol production. Enzyme Regulators of the selected reactions were identified using the Brenda database and 11 selected
regulators were screened and optimized via Plackett-Burman and 2-level full factorial designs, respectively. The proposed
approach has enhanced yields of ethanol from 0.18 to 0.36 mol/mol carbon. Hence, not only a comprehensive approach for
understanding the effect of pH on metabolism was proposed in this work, but also it successfully introduced key manipulations

for ethanol overproduction.

1. Introduction

Almost all processes in microorganisms are dependent on pH, which is why intracellular pH in all cellular
systems is a tightly regulated physiological parameter. pH can affect molecules of living organisms such as
metabolites, protein folding and their functions, enzyme activity, and interactions of lipids (Orij, Brul, &
Smits, 2011).Saccharomyces cerevisiae , Escherichia coli, and Zymomonas mobilis are the most widely used
microorganism in bio-based productions such as ethanol (Joshi, Joshi, Bhattarai, & Sreerama, 2019; Monk
et al., 2016; Valgepea et al., 2017; Yang et al., 2010). The desirable characteristics of these microorganisms
needed for efficient production are to overcome many harsh conditions used in industrial ethanol production;
for instance, low pH levels to reduce contamination risks (Benjaphokee et al., 2012; Kuroda et al., 2019).
Hence, changes in pH levels may cause stressful conditions that affect cellular metabolism and ethanol
production. These stress conditions change metabolite charges, redox balances and the gene expression
profile by activating or repressing specific genes involved in different reaction pathways, such as the central
metabolic pathway, transcription regulation, protein folding, and cell cycle (Dong, Hu, Fan, & Chen, 2017).
The efficiency of the metabolism pathways to produce ethanol depends on the redox control. Alteration in
intracellular pH can change NAD: NADH ratio, which must be redox balanced through an electron shunt.



This electron transfer has enabled the production of ethanol (Contador et al., 2015; Williams-Rhaesa et al.,
2018). Z. mobilis andS. cerevisiae are ethanologenic microorganisms and are also sensitive to pH, while F.
coli is a neutralophilic bacteria that maintain its cytoplasmic pH within a restricted range (Jones & Doelle,
1991; Krulwich, Sachs, & Padan, 2011; Shioi, Matsuura, & Imae, 1980; J. L. Slonczewski, Rosen, Alger, &
Macnab, 1981; Joan L. Slonczewski, Fujisawa, Dopson, & Krulwich, 2009). Thus, it is vital to investigate
different behavior and effect of charge balance due to pH change on the metabolism of these microorganisms.

In order to develop a productive and robust desirable bio-based producer, some researchers have recently
used a constraint-based modeling approach to model pH variability in bio-systems, based on the fact that
cell activity is restricted by controlling physiochemical constraints (Edwards, Covert, & Palsson, 2002; Reed,
Vo, Schilling, & Palsson, 2003). There have been many clarifications in different ways, including the effects
of pH on metabolic flux distributions (Calik & Ileri, 2007), a shift in carbon flux by pH alteration (Jo, Lee, &
Park, 2008), thermodynamic feasibility of metabolic pathways due to pH (Vojinovié¢ & Von Stockar, 2009).
Metabolic models were used to predict the impact of pH upon variation in cell activity. Anderson et al.
(Andersen, Lehmann, & Nielsen, 2009) used constant acid disassociation to model acid production at pH
1.5 7 6.5. Effects of pH on the capability of R. eutropha to produce poly|R~(-)-3hydroxybutyrate| (PHB)
was investigated under pH 6, 7, and 8 values by Park et al. (Park, Kim, & Lee, 2011). In these studies, a
metabolic network involving varied biochemical reactions was used to construct a metabolic model based on
constraints using a pseudo-steady-state assumption with mass and charge balance on each metabolite and
reaction (Swayambhu, Moscatello, Atilla-Gokcumen, & Pfeifer, 2020). Therefore, the proton exchange rate
can indicate the charge balance of the network in genome-scale metabolic models. Examining the interaction
of proton exchange flux and ethanol production on growth can lead to a better understanding of metabolism
associated with the charge balancing and metabolite charge alteration as a result of pH variations. The
impact of pH on growth and ethanol production has not yet been evaluated with genome-scale metabolic
models of microorganisms.

In this research, using genome-scale models of S. cerevisiae, E. coli, and Z. mobilis that their charge balance
has been modified at various pH values (5, 6, and 7), the impact of metabolite charge alteration because
of the pH change on the proton exchange rate and ethanol production was investigated to evaluate the
metabolic differences of these microorganisms under different pH levels. Furthermore, a systemic approach
has been proposed to identify reactions affecting ethanol production rates at various pH levels. Moreover,
comparing the flux distributions of S. cerevisiae at optimal pH=5 (Papapetridis et al., 2016) with other
pH levels can indirectly lead to the identification of the optimum flux distributions for ethanol production.
Hence, this approach offers strategies for improving ethanol production that was experimentally evaluated on
S. cerevisiae by adding inhibitors or activators of enzymes as regulators to the medium (Ehsan Motamedian,
Sarmadi, & Derakhshan, 2019). Finally, the design of experiment (DOE) was implemented to maximize each
selected compound’s concentration.

2. Materials and methods
2.1. Genome-scale metabolic models

In this study, the genome-scale models of iIMM904 (Mo, Palsson, & Herrgérd, 2009), iEM439 (E Motamedian,
Saeidi, & Shojaosadati, 2016), and iJO1366 (Orth et al., 2011) for S. cerevisiae, Z. mobilis,and E. coli
were used, respectively. The intracellular reversible reaction fluxes were constrained between -1000 to 1000
mmol/gDCW /h, while intracellular irreversible reaction fluxes had zero lower limits. For the simulation of
growth on minimal glucose media by the three metabolic models, lower bounds of exchange reactions were
set to zero except for glucose, NHy, HyO, SOy4, Oo, HT, phosphate and inorganic ions exchange reactions.
Growth on glucose was simulated by the maximum uptake rate of 10 mmol/gDCW /h. Flux balance analysis
(FBA) was used to simulate the growth, and the biomass reaction was used as an objective function to
be maximized in all in silicoexperiments. MATLAB (R2017b) was used for modeling using the COBRA
Toolbox, and the GLPK (GNU Linear Programming Kit) package was used to solve linear programming
problems. The reconstructed metabolic models were presented at pH=7 and so, the metabolic models were
modified at other pH levels according to the method presented in the next section. In this research, pH levels



of 5, 6, and 7 were selected for simulation based on the reported intracellular pH range for S. cerevisiae(Valli
et al., 2005), Z. mobilis (Kalnenieks, Pankova, & Shvinka, 1987), and E. coli (Martinez et al., 2012). The
unrealistic intracellular pH level of 5 for E. coli only was also assumed for the intracellular medium of the
three cells to study the effect of high acidity.

2.2. Modification of genome-scale metabolic models

One of the important effects of the variation in the intracellular pH is the change of the ionization state of
metabolites and metabolites contain certain particular functional groups that can lose or obtain protons at
various pH levels. To modify the metabolic networks at different pH values, Marvin view software 19.2, 2019,
developed by ChemAxon (http://www.chemaxon.com) was used to estimate the charge of metabolites based
on their pKa for intended pH value. The mol files of each metabolite, which are generally classified as data files
in plain text format containing molecular details, atom, bonds, co-ordinates, and communication detail, we-
re obtained from Chebi (https://www.ebi.ac.uk/chebi) and PubChem (https://pubchem.ncbi.nlm.nih.gov/)
databases.

The change of metabolites charge can result in the disruption of the charge balance of reactions and so, the
charge balance of the reactions was automatically checked at different pH levels according to the method
presented in Figure 1. Initially, the proton was removed from each reaction in the case of presence. Then,
charges of the metabolites at the right and left side of each reaction were separately summed, and the total
charge of the right side was subtracted from the left side. If it was positive (negative), the proton with
the coefficient of the subtracted value was added to the left (right) side of the reaction. The reaction was
left unchanged if the subtracted value was zero. The charge balance of transport reactions was not changed
because the proton is mechanistically added to the reactions (e.g., simple transport). The charge of the
exchange reactions was not changed because they are pseudo reactions that exchange metabolites between
the cell and the environment. The accuracy of the method was evaluated by comparing the modified model
with the original model at pH=7, and the charge balance of some reactions was not changed due to the
fact that these reactions exchange protons between subsystems to transfer materials (e.g., mitochondria to
cytosol). S. cerevisiae, Z. mobilis, and E. coli contained 8, 2, and 6 kinds of these reactions, respectively.
These reactions were balanced separately, which are shown in Table S1 and S2.

By changing metabolite charges at different pH levels, the charge balance of each reaction would be changed,
which affects in proton exchange rates. To determine the sensitivity of growth to the proton exchange rate
at different pH levels, developed models could be analyzed with robustness analysis which can assess the
optimal value of the objective function by varying the flux of a reaction and indicating the sensitivity of the
objective function to changes in a particular reaction. In this regard, the sensitivity of cell growth to proton
exchange has been assessed via robustness analysis. Mat files of modified metabolic models are also provided
in Supplementary File 3.

2.3. A systemic approach to identify key reactions for ethanol production

In this research, a systemic approach was applied for S. cerevisiae to find candidate reactions for up and
down-regulation for the overproduction of ethanol. As S. cerevisiae is the main industrial ethanologenic
microorganism and the production rate of ethanol is dependent on pH, we assumed that by recognizing the
key reactions for ethanol production at optimal pH, not only can we maintain the cell at optimum pH, but
also increasing ethanol production indirectly.

Initially, the optimal pH level for ethanol production was identified based on a double robustness analysis
determining the sensitivity of growth to proton exchange and ethanol production fluxes. Then, maximum
ethanol production and flux distribution at optimal growth in the selected range of proton exchange rate for
the desired pH level were determined. The absolute Pearson correlation coefficient of 0.95 (p-value of 0.05)
between the flux of each reaction and ethanol production rate was used to determine key reactions coupled
with ethanol production for optimal growth at the desired pH. If the coefficient was positive (negative), the
reaction was selected for up (down) regulation. The Pearson correlation coefficient (between the flux of each
key reaction and growth rate) was also applied to determine growth associated reactions. For evaluation



of the role and importance of each key reaction on metabolic differentiation, fluxes of the key reactions at
pH levels of 5, 6 and 7 were applied to cluster by PCA. Figure 2 indicates the flowchart of the systemic
approach for finding the key reactions for ethanol overproduction and identification of the effect of pH on
the metabolism.

2.4. Experimental materials and method
2.4.1 Statistical approaches for optimization

To evaluate the applicability of the systemic approach for the metabolic engineering of microorganisms,
the regulatory defined medium was designed for S. cerevisiae to remove intracellular constraints through
recognized candidates (Ehsan Motamedian et al., 2019). Activator and inhibitor compounds of enzymes were
obtained from the BRENDA database for up and down regulations, respectively and the regulatory effect of
these compounds has been confirmed empirically. Each regulator was added separately to the medium, and
its impact on the production of ethanol was evaluated experimentally. Moreover, DOE was used to screen and
maximize the concentration of each fruitful compound that was applied. Plackett-Burman design is beneficial
in screening from a long list of compounds, because of fewer required runs. This approach suggests that the
main impacts will be much higher than the interactions between two factors. Hence, this methodology can be
used to identify the most significant independent variables for the optimization stage. The experimental data
analysis was conducted using Design Expert® software version 7.0 (STAT-EASE Inc., Minneapolis, USA).
As shown in Table S3, each independent variable was evaluated at two levels, a high (+) and a low (-) level.
The concentration ranges of the chosen compounds were determined by experimental studies based on the
literature review. The ranges should be neither short nor wide in order to represent the effect of changing
factor’s value appropriately. It is worth noting that for a proper comparison, the ethanol concentration
assessments were conducted when the glucose concentration was depleted to zero.

In the present study, the significant factors identified in the Plackett-Burman experiment were employed in
a full 2-level factorial design. The approach is ideally suited for considering the effects of interaction among
the variables that affected the response based on the contribution percentage of the evaluated variables,
and it generally works well for optimizing the process. The optimal conditions were predicted and assessed
for maximum ethanol production obtained from 8 experiments using Design Expert(™) software version 7.0.
The actual and coded values of factors are shown in Table S4. Variables that significantly affected the
production of ethanol were determined using a confidence level above 95% or a p-value below 0.05. The data
are statistically evaluated by analysis of variance (ANOVA).

2.4.2 Microorganism and culture media

The industrial yeast strain S. cerevisiae (obtained from Bidestan Alcohol Production Company, Iran) was
used in this study. This strain is commonly used in the production of alcohol and can be used as active dry
yeast. The cultures were maintained on YPD agar plates containing Dextrose (2%, w/v), peptone water
(1%, w/v), yeast extract (0.5%, w/v), and agar (2%, w/v). The seed culture also was prepared by the
YPD medium containing (20 g L' dextrose, 10 g L yeast extract, 20 g L' peptone water) at 30degC and
180 rpm. The minimal medium including Dextrose, 20 g/l; KHaPOy, 13g/1; KoHPOy, 2.7g/1; (NHy4)2SOy,
5g/1; KoSOy, 2g/1; (MgSO4).7TH20, 2.5g/1; NaCl, 0.1g/1; CaCly.2H50, 0.35g/1; HoSOy, 1 ml; 4.5 ml of trace
elements solution including FeSO,4.7H20, 2g/1; MnSO4.H,O, 0.3g/1; CoCly.6H20, 0.05g/1; H3BO3, 0.002g/1;
CuS04.5H50, 0.6g/1; ZnCls, 1g/1; KI, 0.008g/1; MoNax04.2H,0, 0.002g/1; Biotin, 0.04g/1 was used for the
cultivation. 47 ml of minimal medium was inoculated with 3 ml of seed culture at the mid-exponential phase
at 30degC, 150 rpm, and the initial measured pH of the medium was adjusted to 5. The chosen compounds
were added to the minimal medium in compliance with the Brenda database concentrations. Concentrated
solutions of these compounds have been separately sterilized by autoclaving them at 121degC for 15 min.

2.4.3 Analytical methods

Biomass formation has been measured at specific time points by assessing the optical density (ODgpp nm)
using a spectrophotometer (Cary50Conc, UV-vis Spectrophotometer, Australia). For the determination



of ethanol and glucose concentrations, the main culture was harvested by centrifugation (6000xg, 12 min,
4degC), and the supernatant was analyzed via G.C. The Glucose concentrations were measured enzymatically
using a colorimetric glucose oxidase kit (Pars Azmun, Iran).

The concentration of ethanol was determined by using gas chromatography GC-2550TG (Teif Gostar Faraz
Company, Iran), Hydrogen gas as the carrier gas and the injection, column and flame ionization detection
(FID) temperature was maintained at 120degC, 250degC and 250degC respectively. Ethanol (99/9%, Merck)
was used as the internal standard.

3. Results
3.1. Evaluation of modified genome-scale metabolic models at different pH levels

Figure 3 demonstrates the effect of proton exchange flux on the growth rate of Z. mobilis , S. cerevisiae, and
E. coli . As the steady-state condition is assumed by FBA, the amount of charge entering the cell has to be
equivalent to the leaving amount; thus, protons are consumed or produced for the charge balance. It can be
inferred from Figure 3 that Z. mobilis is more sensitive to pH rather than S. cerevisiae and the yeast is more
regulated by pH rather than FE. coli . E. coli is a neutralophilic bacterium that can maintain its cytoplasmic
pH in a narrow range of ~7.5-7.7 and can grow at extracellular pH values from 75.5-9.0 (Martinez et al.,
2012). However, the influence of extracellular pH on intracellular value is significantly more for acidophilic
microorganisms Z. mobilis and S. cerevisiae . By decreasing the external pH from 7.0 to 2.2, a progressive
reduction of the internal pH from 7.1 to 5.1 was observed in exponentially grown cells (Valli et al., 2005).
Experimental data (Kalnenieks et al., 1987) showed that the reduction of extracellular pH of Z. mobilis from
5.6 to 3.5 would change the intracellular pH from 6.4 to 5.75.

A comparison of the results shows that Z. mobilis is the most sensitive microorganism to proton exchange
and Figure 3a indicates that this bacterium is only capable of producing protons. The charge balance of
this microorganism is merely possible to the proton production rate of approximately 6 mmolgDCW-'h!,
This range is small in comparison with two other microbes and indicates the less flexibility of Z. mobilis
metabolism to pH changes. Furthermore, the proton exchange range for optimal growth of Z. mobilis is
in the limited amount of 0.5 to 1 mmolgDCW-th"t. Z. mobilis is an ethanologenic bacterium that prefers
the maintenance of intracellular pH rather than more growth. Motamedian et al.(Kalnenieks et al., 1987; E
Motamedian et al., 2016) expressed that more proton exchange leads to further growth only when growth
and energy are coupled. So, the low flexibility of Z. mobilis metabolism to pH changes and its tendency for
the maintenance of intracellular pH can justify its energy-uncoupled growth.

Comparison of Figures 3b and 3c indicates that the metabolic sensitivity of S. cerevisiae is more than E. coli
. Similar to Z. mobilis , S. cerevisiae also mostly produces protons and the optimal growth of S. cerevisiae
is accompanied by proton production in the limited range of proton exchange rates, which is near to zero. It
is evident that as the internal pH drops to acidic condiction, charges of metabolites would lead to positive
numbers (Figure S1). Given that the steady-state assumption, it is expected that proton is produced in
optimal growth condition, which can be seen in the robustness analysis of S. cerevisiae and Z. mobilis since
glucose as the carbon source has no charge and ammonium with positive charge can be the determinant
substrate for charges entering the cell. However, E. coli has the opposite behavior by consuming protons,
as the internal pH drops and at pH=b5, the optimal proton consumption rate for the growth of E. coli is
equivalent to -10 mmolgDCWh! the biomass charge will be more positive in acidic pH (Figure S2). This
effect of the biomass charge can also be seen in pH=7 for Z. mobilis andS. cerevisiae , which biomass charge
has a noticeable difference with other pH levels (Figure S2).

Figures S3-8 demonstrate another metabolic similarity of S. cerevisiae and Z. mobilis in which optimal
growth rate is associated with maximum ethanol at all pH levels while the results forE. coli is not monotonic
(Figure S9-11). In this regard, S. cerevisiae and Z. mobilis have more in common as they are known as
industrial ethanologenic organisms with an ethanol yield of 0.41 and 0.5 g/g (Table S5). However, Maximal
ethanol production under optimal growth for E. coli is obtained for pH=6 and this maximal value for pH=7
is more than that for pH=5. The experimental data also confirm that the optimal pH for ethanol production



by E. coli is 6.5. Besides, the lowest yield of ethanol production is reported for E. coli 0.09 g/g, while this
bacterium has the highest growth yield, according to Table S5. Bekers et al.(Bekers, Heijnen, & Van Gulik,
2015) experimentally evaluated the amount of NAD: NADH ratio assuming a decrease in intracellular pH
would increase this ratio, which means more NADH consumption and higher ethanol production. Z. mobilis
andS. cerevisiae are the acidophilic microorganisms and capable of more ethanol production than E. coli
, which is the neutrophilic bacteria. In fact, cells with the capability of higher ethanol production showed
tightly regulated metabolism and responsiveness to pH changes due to the imbalance of NAD: NADH ratio.
Consequently, Z. mobilis , which converts 95% of its carbon source into ethanol and COs, then S. cerevisiae
and FE. coli are more regulated by pH, respectively.

Despite the similarity of the metabolism of S. cerevisiae andZ. mobilis , S. cerevisiae is more flexible and its
sensitivity to proton exchange rate reduces as the internal pH decreases (Figures 3a and 3b). The metabolic
models predict that pH=5 is the most appropriate level for growth and ethanol production (Figures S6-8).
Sensitivity to proton production rate at this pH level disappears and maximal ethanol production in the
wide range of proton production rates under optimal growth rate is possible. Experimental data confirm
the predicted optimal pH for S. cerevisiae and Narendranath et al. (Narendranath & Power, 2005) stated
that the ideal pH for S. cerevisiae is at the optimum enzyme activity of that product, which is 5-5.5 for the
production of ethanol and yeast growth. Furthermore, the growth yield (Table S5), growth rate (Figures 3a
and 3b) and tolerance to environmental stresses of S. cerevisiae are significantly higher than Z. mobilis .
These characteristics have made S. cerevisiae the main strain for ethanol production in the industry.

3.2. Applying the systemic approach for improving ethanol production of S. cerevisiae

To find candidate reactions for S. cerevisiae , the correlated reactions with ethanol production at pH=>5 were
identified using the Pearson correlation coefficient (between fluxes of each reaction and ethanol production)
in the range of proton exchange rate between -2 and 23 mmolgDCW-'h!. This range was determined based
on robustness analysis (Figure 3b), considering that the metabolic model of pH=5 was robust for growth
compared to the two other models and maximum ethanol is produced at optimal growth in this range (Figure
S8). So, flux distributions at optimal growth in the selected range were determined and correlated reactions
with ethanol production were determined (Supplementary File 2). These 252 reactions are key reactions
that indicate the manner of using metabolism for maximal ethanol production during optimal growth. 67
reactions with positive coeflicient are candidates for up-regulation and 185 with negative coefficient are
predicted for down-regulation. The Pearson correlation coefficients between these reactions and growth
indicate that the correlated reactions with ethanol production are non-growth associated and vice versa
(Supplementary File 2). So, the correlation coefficients predict that up and down-regulation of candidate
reactions for overproduction of ethanol results in growth reduction(Naghshbandi et al., 2019; Pagliardini et
al., 2013).

For more screening of the key reactions and determining the important genes affected by the pH change,
PCA was performed using fluxes of the key reactions at pH levels of 5, 6 and 7. Figure 4a illustrated a clear
distinction between pH=>5, and the other three pH models were achieved based on the first PC. Only the first
two components have been considered as they demonstrate the high percentage of variation between pH=>5
and other pH levels: 90.18% for PC1 and PC2 (Figure 4b). The decomposition of data by PCA indicates
the contribution of each correlated metabolic reaction to the differentiation of models at various pH values.
Among the 252 key reactions, 12 reactions including ILETA, ME2m, PDHm, ICDHyr, CSm, ACONTm,
DESAT16, NDPK1, THRD L, ICL, AGTi, and MDH were essential for the discrimination of pH models
based on the PCA results presented in Figure 4c. These reactions were selected to evaluate the effects of
regulators on their enzymes on ethanol production. Table S6 provides information for these 12 reactions in
detail.

It can be seen that various approaches have been suggested by the systemic approach for ethanol over-
production. Figure 5 shows the comprehensive connection of each proposed reaction, which is suitable for
up-regulation or down-regulation. For instance, through observing the model reactions, mitochondrial pyru-
vate is not capable of converting to acetaldehyde and must enter the cytosol for conversion to ethanol. Thus,



according to the PDHm reaction (Table S7), coenzyme A reacts with the mitochondrial pyruvate to produce
acetyl coenzyme A. The product of this reaction is then converted to citrate by the CSm reaction and the
produced citrate is responsible for providing isocitrate via ACONTm reaction. Cytosolic isocitrate is gen-
erated by mitochondrial isocitrate from the CITtcm and then converted to 2-oxoglutarate by the ICDHyr
reaction. This metabolite is further produced to cytosolic pyruvate by the ALATA L reaction, which leads
to acetaldehyde by PYRDC. Eventually, acetaldehyde is reduced to ethanol by the ALCD?2ir.

The predicted redirecting flux to the TCA cycle under acidic conditions is expected. Isocitrate dehydrogenase
(ICDHyr), citrate synthase (CSm), Aconitate hydratase (ACONTm), which were ethanol-associated (or
non-growth associated) reactions and Malic enzyme NADP mitochondrial (ME2m), with growth correlated
coefficient (or non-ethanol associated), were the identified candidate reactions in TCA. The predictions of the
systemic approach were in compliance with fluxes determined by experimental data, where Blank et al.(Blank
& Sauer, 2004) showed that malic enzyme and mitochondria were more active under acidic conditions, as
was clear from metabolic reactions located at crucial branch points in central metabolism. Furthermore,
previous studies have supported the predicted effects of some reactions. These were the bottleneck reactions
for both growth and ethanol production at pH=>5. Isocitrate dehydrogenase (ICDHyr) reaction, which is
encoded by IDP2, converts isocitrate to o-ketoglutarate, Scalcinati et al.(Scalcinati et al., 2012) showed that
overexpression of IDP2 has resulted in an increased NADPH production to supply the required energy for
biomass and yeast growth. The alanine glyoxalate aminotransferase (AGTi) reaction, which encoded by
AGX1, converts glyoxalate and alanine to glycine and pyruvate. Chidi et al.(Chidi, Rossouw, & Bauer,
2016) experimentally confirmed that the deletion of AGX1 increased pyruvic acid, which led to improved
ethanol production.

3.3. Identification of regulators for the selected reactions

In this section, new compounds have been added to the medium, not only as a nutrient but also as a regulator
to maintain the flux distributions at the optimum pH level. To assess the model’s power to detect unknown
yeast bottleneck reactions, we have used the Brenda database to identify activators/inhibitors for the target
reactions (Table S8). The available BRENDA activators and inhibitors have been applied separately to the
medium for the assessment of each efficient regulator. The concentrations (extracted from BRENDA) and the
effects of each regulator on ethanol yield are shown in Figure 6 and providing information on glucose depletion
time and yeast growth were presented in Table S3, 8. In order to precisely evaluate the regulatory effect of
each compound, ethanol yield production was assessed as moles of produced ethanol per one carbon mole
of all added carbon sources in the medium. The control sample yield (without any regulator) was 0.18 mole
ethanol/mole carbon equals to 5.5 g/1 ethanol. We experimentally tested 15 regulators and 11 compounds
were selected for more evaluation, including EDTA, glycerol, sodium acetate trihydrate, and cysteine as the
activator and glycine, ammonium chloride, imidazole, zinc chloride, calcium carbonate, magnesium sulfate,
and zinc sulfate as the inhibitor. The other four remaining compounds (including copper (II) chloride, copper
(IT)chloride dehydrate, phenanthroline monohydrate, silver nitrate) were inhibited growth and were excluded
from optimization experiments.

3.4. Screening and optimization of the selected regulators

The 11 selected regulators were evaluated using a Plackett-Burman design for their effects on the yield of
ethanol mol/mol carbon (Table S9). Table S9 demonstrates that the design matrix is chosen to screen sig-
nificant variables for ethanol production and the corresponding response. The model appropriateness was
assessed, and the variables indicating statistically significant impacts were screened via their p-values of
ANOVA. Factors with confidence levels above 85% (P < 0.15) were considered to have significant effects and
were therefore selected for further optimization studies. Imidazole was estimated to be the most significant
factor, with a probability value of 0.0008, followed by glycine (0.04), and glycerol (0.13). The other insignif-
icant variables were dismissed, and 2-level full factorial design then calculated the optimum values for the
three variables. We evaluated the eleven best-anticipated regulatory interactions, including two regulators
with a strong in vitro impact in S. cerevisiaewith no prior evidence for their regulatory significance. The
majority of these regulators had not been already proposed in S. cerevisiae .



To identify the right combination of regulators for optimal ethanol production, the concentration of the
aforementioned variables has been optimized. In this study, a 23 two-level full factorial design was used
for three independent variables at two levels each, resulting in 8 experiments. Table S4 presents the full
experimental plan regarding their actual and coded values, and the corresponding results of experiments.
ANOVA statistical results for the selected factorial model are given in Table 1. The Model F-value of 697.8
indicated that the model was significant, so there was only a 0.014% probability that a > Model F-value
" could occur due to noise, according to the statistical results for the quadratic models provided in Table
1. The values of 'prob > F’ for a model below 0.05 (< 0.0001) suggested that the model was statistically
significant, with a confidence interval of 99.99%.

Significant terms are shown in Table 1 indicates that interaction terms of BC and AB are very significant,
respectively. In Table S10, the optimal concentrations suggested by the statistical model are provided, and it
was expected that the optimal yield of 0.36 mol/mol carbon was obtained, which was verified experimentally.
Additionally, ethanol concentrations improved from approximately 5.5 g/l to 11.6 g/1. The findings show
that the approach was able to adjust the flux distribution at optimum pH by adding certain regulatory
compounds so that more ethanol was produced, and 2.1 fold higher than the measured yield for the control
sample was achieved.

4. Discussion

Our results address critical questions in metabolism, such as changes in metabolic fluxes due to pH constraint,
what shifts the metabolic pathways, and what induces cells to adjust the way they perform their metabolism,
as illustrated by the shift in metabolism from pH 7 to 5. Our strategy proposes optimizing growth under the
constraint of pH as the central principle shaping metabolism. The pH changes contribute to a redirection of
metabolic fluxes (for example, shift to TCA cycle under acidic conditions) as the exchange rates of proton
increase and cells aim to optimize their growth. This finding suggests that the developed charge-balanced
models are capable of revealing the physiological properties of the cells and that the models are a more
suitable platform for addressing the challenges of using these cells in bio-based production.

Our work also shows that a limit of pH in modeling could constrain cellular metabolism. This constraint
is undoubtedly a universal and physical metabolism restriction that can be applied not only in eukaryotes
(yeast) but also in prokaryotes (E. coli , Z. mobilis ). Besides, our principle of metabolic flux prediction pro-
vides an advantage over conventional FBA-based techniques, since it systematically investigates metabolism
in order to perform better and more effectively in metabolic engineering approaches. The findings draw on
previous research in S. cerevisiae and other microorganisms, which is aligned with our results that substrate
concentration changes are a significant contributor to overall flux distribution changes(Daran-Lapujade et
al., 2004; Gerosa et al., 2015; Valgepea, Adamberg, Seiman, & Vilu, 2013). Meanwhile, despite the value
ofS. cerevisiae as an industrial microorganism, our observations into its regulatory metabolic flux at vari-
ous pH levels may be of substantial benefit in systems metabolic engineering. Therefore, using genome-scale
metabolic models to evaluate pH effect can provide comprehensive solutions to improve biofuels, biomedicine,
and bio-based production, especially reduced products such as ethanol.
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Table 1. F-value and p-value provided by the ANOVA for significant factors (A: Glycine, B: Imidazole, C:
Glycerol).
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Source F-value p-value

Model 697.83 < 0.0014 significant

A 130.29 0.0076
B 2642.57  0.0004
C 346.23 0.0029
AB 149.17 0.0066
BC 220.9 0.0045
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