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Abstract: The main objective of this study was to use an uncertainty version of a widely used monthly
time step, semi-distributed model (the Pitman model) to explore the equifinalities in the way in which the
main hydrological processes are simulated and any identifiable linkages with uncertainties in the available
observational data. The study area is the Zambezi River basin and 18 gauged sub-basins have been included
in the analyses. Unfortunately, it is not generally possible to quantify some of the observational uncertainties
in such a data scarce area and mostly we are limited to identifying where these data are clearly deficient (i.e.
erroneous or non-representative). The overall conclusion is that the equifinalities in the model are hugely
dominant in terms of the uncertainties in the relative occurrence of different runoff generating processes,
although water use uncertainties in the semi-arid parts of the basin can contribute to these uncertainties. The



identification of landscape features that suggest the occurrence of saturation excess surface runoff provides
some information to constrain the model. Improved independent estimates of groundwater recharge is also
identified as a key source of observational data that would help a great deal in constraining the model
parameter space and therefore reducing some of the model equifinality.
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INTRODUCTION

Models are typically developed to simulate the response of a system to driving forces in the absence of
observations of the response. This is true for many different kinds of models, including environmental
models (hydrology, geomorphology, oceanographic, climate, etc.), economic models, health models (drug
pharmacokinetics, for example) and others. Models may also be constructed to improve our understanding
of the internal dynamics (processes) of the system (Ward, 1985; Fenicia et al., 2008; Beven, 2012), even
if there are observations of both the driving forces and the response. The dilemma is that we need some
observational data to be able to develop and validate the model structure (McMillan et al., 2011). A further
problem lies in the reality that, for many systems, and notably environmental systems, the observational data
that are available (including the driving forces) are often deficient in terms of accuracy or representativeness
and are therefore uncertain (Beven, 2009; Westerberg and McMillan, 2015). Observational ‘data’ may also
refer to different things; some may be ‘hard’ quantitative data (direct measurements), while some may be
‘soft’ qualitative data (Winsemius et al., 2009). While the sources of uncertainty in hard and soft data may be
different, both are subject to errors (McMillan et al., 2012) that will potentially influence the development of
the model, or the model results (Gan et al., 1997). From a hydrological perspective, models may be developed
on the basis of largely soft conceptual data (classical hydrological process theory; Ward, 1984), tested in
places (or at times) where hard data are available, and applied in places and times when there are few hard
data, through a process of extrapolation (parameter regionalisation, for example) using a combination of
hard and soft data (Siebert and McDonnell, 2002).

Models may be constructed in a way that largely ignores the internal processes and concentrate on establish-
ing a quantitative relationship between the inputs (driving forces) and the output responses (Todini, 2011).
Alternatively, models may be designed to explicitly simulate the internal processes of the system, using dif-
ferent levels of complexity (Chien and Mackay, 2014). Arguably, the latter require more observational data if
we wish to not only validate the responses, but also the realism of the internal process simulations (Kirchner,
2006; Euser et al., 2013). The issue of model complexity has been a recurring theme in the hydrological
modelling literature for many years (Hrachowitz et al., 2013), and there have been arguments presented in
favour of both simple (or parsimonious) models, as well as more complex models (Jakeman and Hornberger,
1993; Perrin et al., 2001). Arguably, a simple model is easier to apply from a mathematical perspective,
particularly if the model time step is short, has many spatial elements, and if automatic calibration (or
uncertainty ensemble outputs) methods are to be used. Clearly, a small parameter space defining the hy-
drological response characteristics of each spatial element will take less time to run, and probably converge
to a unique solution quicker (less equifinality; Beven, 2006) than a model with a larger parameter space.
For models that are applied with coarse spatial (sub-basins) and time scales (monthly), the issue of model
complexity becomes less of a problem from a computer run time perspective, but the issue of equifinality
remains. It might also be argued that there is little point in having a complex model structure if it is applied
at coarse spatial and temporal scales because all the individual hydrological processes are subsumed in the
total sub-basin response characteristics. However, this argument relies on the assumption that the total
response cannot be decomposed into the sub-basin scale effects of individual processes. There is evidence to
suggest that this argument is false in at least some regions and that it is possible to infer (or hypothesise)
the relative effects of different processes from the total basin response (Clarke et al., 2009; Hughes, 2013,
2016). A model that includes, implicitly or explicitly, the range of different hydrological processes can be
used to assess the validity of process hypotheses (Gallart et al., 2007; Beven, 2012), through any number
of different uncertainty analysis methods (Pechlivanidis et al., 2011). This type of approach would not be
possible with a much simpler model structure where processes are lumped together in model algorithms that



are designed to represent the total response, but not individual processes.

The detailed outputs of a more complex model can be compared to any data (hard and soft) that might
be available to support the presence and importance, or even partially quantify, specific process activity.
This is an important point, given the ever increasing availability of global data sets based on increasingly
more sophisticated (and presumably more accurate and representative) methods of collecting and processing
remote sensing data that can tell us something about inter aliavegetation, evapotranspiration, soil and
ground water storage regimes and their variation over space and time (Pekel et al., 2016; Lucey et al., 2020;
Sadeghi et al., 2020). The regional context of this contribution is southern Africa, where it is hard enough
to maintain even basic hydrometeorological observation networks (rainfall and stream flow), and therefore
the likelihood of ever having detailed ground-based observations that might help to resolve questions about
process activity is extremely remote. One motivation for more complex models is that we wish to know
whether we are modelling the response for the correct reason (Kirchner, 2006), given the many different
limitations and uncertainties inherent in the model and available forcing data. Perhaps the key questions
are what is the value of this information, how would we benefit from it, and why is it important to generate
realistic outputs for the right reason? Apart from the rather esoteric answer that as scientists we want know
if we are correct, this knowledge could be valuable for applying the same model in areas that are not gauged.
This introduces the other key theme that has perplexed hydrological modellers for a number of decades;
what are the best ways of transferring the knowledge about a model and it’s functioning from gauged basins
to ungauged basins? There have been many contributions to this topic and many suggestions for different
approaches (Bléschl, et al., 2013; Hrachowitz et al., 2013). Perhaps the two main approaches are those based
on parameter regionalisation using basin physical properties and their relationships with calibrated parameter
values (Pokhrel and Gupta, 2009), and those based on the regionalisation of basin response indices against
which the ungauged basin model outputs can be compared, or constrained (Westerberg et al., 2016; Kabuya
et al., 2020; McMillan, 2020). There are also some model packages that provide direct methods of calculating
parameter values from basin physical properties. All of these approaches rely upon some observational data
associated with the main driving variables (climate), total basin response and landscape characteristics,
which will inevitably be subject to uncertainties that will impact on the validity of the parameter estimation
methods and simulation results.

The main purpose of this contribution is to unpack some of the uncertainties associated with the observa-
tional data as well as the model, and to explore how these uncertainties affect hypotheses about the key
hydrological processes that are active within different parts of the basin. The real point is to investigate how
this approach might be useful in conjunction with an understanding of the links between process activity
and a conceptual interpretation of the landscape to help with parameterising the model in ungauged areas.
The term ‘landscape’ is used here to represent the many different characteristics that might influence the
dynamics of the runoff response and includes topography, vegetation, soils, geology, drainage pattern, etc.
The term ‘conceptual’” assumes that the interpretation could be based on a mixture of both soft (or subjec-
tive) and hard (numerical analysis of available data) information. The geographic context is the Zambezi
River basin in southern Africa, where different climate zones are represented, where data are typically scarce
and often of unknown quality, but where well informed water resource management decisions are required
that frequently rely on simulated information. The model is a version (Hughes, 2013) of the Pitman (1973)
monthly time-step model that has been widely used in the region and is typically applied at relatively coarse
spatial scales (in a semi-distributed, sub-basin structure). However, the principles of the approach are con-
sidered to be equally applicable to any other model where individual hydrological processes are represented
either implicitly or explicitly.

THE PITMAN MODEL AND PROCESS INTERPRETATION

Most of the original structure (Pitman, 1973), as well as more recent additions (Hughes, 2004; Hughes
and Mazibuko, 2019) to the model have been designed to represent processes explicitly (Figure 1), albeit
at the sub-basin scale, using approaches that are similar to the probability distributed principle of Moore
(1985). Given the rather large parameter space (20 parameters covering the full range of natural hydrological



processes), any form of calibration (manual or automatic) can become a daunting task and experience
suggests (Hughes, 2013) that to benefit from the explicit representation of the processes, it is important to
understand the conceptualisation of the model algorithms. Figure 1 summarises the main model structure,
while the following sub-sections provide a little more detail. The model outputs include some details of the
simulations of the individual processes so that these can be compared to any available observational data as
well as the total sub-basin output.

Interception and evapotranspiration.

Interception depth is defined by a storage parameter that can vary seasonally, while evapotranspiration
losses are dependent upon soil moisture storage, input values of potential evapotranspiration (PET) and
a parameter (0[?]R[?]1, with lower values implying higher relative actual losses). Spatial and temporal
variations in vegetation cover can be readily obtained from satellite imagery such as Leaf Area Index (LAI)
or MODIS Normalized Difference Vegetation Index (NDVI) data, but these data do not provide direct
measures of interception loss.

Surface runoff.

There are two methods of generating surface runoff in the Pitman model (ISQ and SSQ in Figure 1). The
first is effectively a saturation-excess surface runoff process (Hughes and Mazibuko, 2018), while the second
is a function only of rainfall depth and represents an infiltration (or adsorption) excess surface runoff process.
The key parameter (SSR) is the wetness value (ST*SSR) at which this process is initiated. This function was
added to account for the presence of relatively flat valley bottom areas (Dambo’s) that remain wet during
the dry seasons, due to interflow from the surrounding hillslopes (von der Heyden, 2004). These features are
relatively straightforward to identify using Google Earth imagery, while Lampitlaw and Gens (2006) refer
to quantitative mapping methods using satellite imagery and topographic analysis. Hughes and Mazibuko
(2018) demonstrated that the inclusion of this function improved the seasonal distributions of simulated
flows in catchments where such landscape features are known to exist, but gave poorer simulations if used
in other areas. The second surface runoff function uses a triangular distribution of catchment adsorption
rates defined by two parameters and the area under the cumulative frequency curve for a given rainfall depth
represents the depth of surface runoff. There are no data sources that can directly help with quantifying
these parameters.

Interflow runoff

Interflow runoff depth is determined from a non-linear power relationship (Figure 1; I1Q) and there are
no observational data that can directly support the determination of the parameters (FT, SL and POW).
However, topography and soils data can at least point to the likelihood that interflow is either a dominant
or largely irrelevant process. The key signal in the observed stream flow data is the shape of the wet season
recession, where slow (or fast) recessions suggest relatively high (or low) proportions of interflow.

Groundwater recharge and discharge to stream flow

The recharge function is the same form as the interflow function (Figure 1) and is routed through a conceptual
groundwater storage (influenced by drainage density and storativity parameters), while outflows to the
river channel are mostly determined by a transmissivity parameter and the level of storage (used with
drainage density to estimate the hydraulic gradient towards the channel). An additional parameter defines
the proportion of the sub-basin area that represents the riparian strip from which groundwater can be lost
to evapotranspiration. Further details of the structure and algorithms can be found in Hughes (2004).
Experience within South Africa suggests that the best information for constraining some of the parameters
comes from independent evaluations of groundwater recharge rates and the geological characteristics of the
underlying aquifers (DWAF, 2005).

Water use functions

Apart from an option to account for large reservoirs, there are also functions to allow for direct abstractions



from the river, and for storage and abstractions from distributed small dams. The available data for quanti-
fying storages and abstractions in southern Africa is typically almost non-existent (or at least not available),
while some global data sets are available to quantify the maximum surface area of water bodies (Pekel et
al., 2016; Gonzalez-Sanchez et al., 2020) and areas under irrigation (IFPRI, 2019), but converting these to
useful information on patterns of water use is also subject to a great deal of uncertainty (discussed later).

Equifinality between and within the different process representations.

The two surface runoff functions both determine the patterns of moderate to high flows, but they have quite
different seasonal distributions because the first is driven by the sub-basin moisture status and rainfall, while
the second is driven only by rainfall. Resolving some of the equifinality therefore relies on an assessment
of the shape of the wet season stream flow response, or clearly identifying the presence of Dambo type
features. The interflow and both surface runoff functions partly determine the shape of the middle part of
the flow duration curves and it is never very straightforward to determine the most appropriate parameter
combinations. Simulating low flow patterns are associated with equifinalities between the interflow and
groundwater recharge functions, within the two functions (the interplay between the scaling (FT and GW)
parameters and their respective power parameters (POW and GPOW), Figure 1), as well as between the
recharge and the amount lost to riparian evaporation. It is often possible to identify signals in the observed
stream flow data that can resolve at least some of these equifinalities, but there almost always remain a
quite broad range of plausible parameter sets that produce similar responses. Low flow simulations are also
affected by equifinalities between the natural hydrology functions and the impacts of distributed water use.

STUDY AREA and DATA

While there are many gauged sub-basins within the southern Africa region that could be used, the focus is
on the Zambezi River basin, largely because this basin has recently been the subject of a model calibration
(Hughes et al., 2020) and climate change assessment (Hughes and Farinosi, 2020) study conducted under
the auspices of the African Union - NEPAD African Network of Centres of Excellence on Water Sciences
and Technology - ACEWATER phase 2 project. The primary objective of this study was to achieve an
acceptable calibration of the model across the 76 defined sub-basins (Figure 2) and to investigate the range
of uncertainties in the water resources availability in the future. While they were not ignored, there was less
focus on the likely realism of the modelled processes or the observational data uncertainties, which are the
main concern of this paper.

The Zambezi River basin covers a total area of some 1 350 000 km? and has eight riparian countries (Angola,
Botswana, Malawi, Mozambique, Namibia, Tanzania, Zambia and Zimbabwe). The rainfall is highly seasonal
and occurs mostly in the summer months between October and March. Annual rainfall amounts vary from
about 1 200 mm y! in the upper areas of the Shire and Kafue sub-basins, to less than 700 mm y! in the
semi-arid sub-basins of Zimbabwe (Hughes et al. 2020). There are a number of gauging stations in the
basin, some in the headwater areas and others on the main rivers. This study concentrates on 18 headwater
gauged sub-basins (Figure 2, Tables 1 and 2) most having records dating back to about 1960. They have
been selected to represent the range of climate conditions, as well as the type and range of uncertainties
that are expected to exist in the observational data that are available to assist with establishing behavioural
model set ups. Table 1 provides the gauging station details, but the remainder of the paper refers to these
sites using the model setup sub-area names given in Figure 1 and the first column of Table 1. Additional
information about these sub-basins is contained within the results section, where it is considered relevant to
the interpretation of the model outputs.

While many of the main tributaries are gauged, the Zambezi River basin is typical of many other parts of
southern Africa in that it is largely a data scarce region, particularly with respect to local climate data. Even
the available stream flow data contain a number of uncertainties, partly related to possible rating curve prob-
lems, and partly related to periods of missing data (Hughes et al., 2020). The original model was forced with
the University of East Anglia, Climate Research Unit data (https://crudata.uea.ac.uk/ timm/grid/CRU_-
TS_2_1.html, accessed during Oct. 2019), available from 1901 to 2017 at a grid scale of 0.5° (Harris et al.,



2014). Additional rainfall data (for the same period and spatial resolution) from the University of Delaware
(UNIDEL; Willmott and Matsuura, 2001) were used to assist with identifying key rainfall data uncertain-
ties. Both of these rainfall products are based on extrapolation from sparse ground stations and are expected
to contain large uncertainties, particularly in the representativeness of individual monthly rainfall depths.
Comparisons between them suggest that in most places they agree quite well, but there are some of the Lake
Malawi/Nyasa sub-basins where there are substantial differences in the mean annual rainfall suggested by
the two datasets (Table 2).

The potential evaporation (PET) data are based on the LISVAP calculations (Alfieri et al., 2019) using
the ERA5 data for 1979 to 2018 (https://confluence.ecmwf.int /display /CKB/ERA5+data-+documentation,
accessed during Oct. 2019), which are also expected to contain a number of uncertainties . However,
given that the Pitman model uses a single annual PET depth and a fixed seasonal distribution for each
sub-area, the main data uncertainties are expected to be in the mean annual values and the uncertainty
range in the model has been set to +-10% of the LISVAP values. Estimates of LAI are expected to be
useful for constraining simulated interception depths (annual means, seasonal distributions and even time
series values). The major uncertainties are not expected to be in the conversion of LAI into depths of
interception for a given climate regime (De Groen and Savenije, 2006; Wu et al., 2019; Navar, 2020).
The LAI data (Mao and Yan, 2019) used in the study are long-term (1981 to 2015) monthly means
(https://daac.ornl.gov/VEGETATION/guides/Mean_Seasonal LALhtml, accessed during July 2020) and
the seasonal range for all sub-basins used in this study (plotted against their aridity index), as well as
some sample seasonal distributions are given in Figure 3. MODIS actual evapotranspiration data (AET)
could help with partially resolving some of the annual or long-term water balance (stream flow = rainfall —
evaporative losses) uncertainties. However, the MODIS AET data are themselves subject to uncertainties
(Velpuri et al., 2017) related, in part, to the availability of local climate data, as well as the interpretation
of vegetation reflection signals.

Groundwater recharge data are potentially very useful for resolving some of the equifinalities between sim-
ulated interflow and groundwater contributions to stream flow, and estimates for the different geological
and climate zones of the basin are available from the British Geological Survey (MacDonald et al., 2012).
However, the level of uncertainty is largely unknown as it is not very clear how the estimates were derived.
Some remotely sensed soil moisture data were investigated during this study. Although these were not ex-
pected to be useful for constraining or checking the simulated soil moisture storage regime (largely due to
the shallow depth of penetration of the sensors), it was considered that the data could be useful to identify
landscape features (such as Dambos) that have different patterns of near surface moisture storage to other
areas and therefore assist with setting the parameter of the saturated surface runoff function. In order to
test the validity of our hypotheses, we used here the European Space Agency (ESA) Climate Change Ini-
tiative Soil Moisture dataset (ESA-CCI v0.47: https://www.esa-soilmoisture-cci.org/node/238, accessed on
August 2020) (Dorigo et al. 2017; Gruber et al. 2017, 2019) and the NASA — JPL Soil Moisture Active Pas-
sive (SMAP) (respectively Level 4 9km: https://nsidc.org/data/SPL4SMAU /versions/5; and Level 2 3km
resolution: https://nsidc.org/data/SPL2SMAP_S/versions/2 , accessed on August 2020) (Das et al. 2019).

Water use data are notoriously difficult to obtain in most parts of southern Africa, but some indications of
agricultural water use can be obtained from GIS analysis of land use data (IFPRI, 2019) to identify areas
of irrigation. The uncertainties lie in the accuracy of the remotely sensed land use data as well as any
assumptions made about irrigation application rates. Similarly, it is not always clear where the water is
obtained from (reservoir, run-of-river or groundwater supplies). There are data available on the maximum
surface area of reservoirs, that include quite small farm dams (Pekel et al., 2016; Gonzalez-Sanchez et al.,
2020), however, translating the areas into storage volumes is highly uncertain (Hughes and Mantel, 2010;
Busker et al., 2019), as is defining the contributing catchment areas of the dams. This issue is particularly
relevant to the Zimbabwe sub-basins (Figure 2 and Table 2).

METHODS of ANALYSIS

The main approach to this study has been to use an uncertainty version of the Pitman model to explore



different parameter combinations that generate similarly ‘good’ reproductions of the observed streamflow
response. The version of the model used allows for any or all of the parameter inputs to be defined by min-
imum and maximum values, which are independently randomly sampled (uniform distribution) during each
of (typically) 10 000 ensemble runs. The parameter values, a range of summary statistics (e.g. mean monthly
values of runoff volume, recharge depth and depth of the four main modelled processes) and goodness-of-fit
statistics (objective functions) for each ensemble are part of the model outputs. To avoid a single objective
function statistic from dominating the selection of ‘good’, or behavioural simulations a simple combined
statistic (CS) is used that combines the Nash coefficient of efficiency values (CE) and the % bias in mean
monthly runoff (%Bias), based on untransformed and natural log (In) transformed values.

% Bias(ln)
100

% Bias
100

CS = CE + CE(In) + 2

Equation 1

The maximum value is 4.0 for a perfect fit, while behavioural ensembles can be selected as those that have
CS values greater than (say) 95% of the highest (best fit) value for the whole ensemble set.

The methods are therefore simple, but the process of setting appropriate parameter ranges and interpreting
the results is often more complex, particularly when many parameters are set to be uncertain in the same
run. Previous experience (Hughes, 2016) therefore suggests that several runs of the model focussing on
different groups of parameter interaction (or different process components of the water balance) are frequently
necessary to be able to explore the equifinalities in detail. In the context of this Special Issue of the journal,
the possible effects of uncertainties in either the forcing climate data or the observed stream flow data are also
explored, as well as the value of any other hard or soft observational data (referred to in the previous section)
that can be used to resolve some of the equifinalities. The latter would typically be used to either constrain
some of the parameter ranges, or exclude ensemble members that do not generate outputs consistent with
the data.

RESULTS

There is insufficient space to present the full results for all 18 sub-basins, and some sub-basins are presented in
more detail to represent specific elements of uncertainty, while some of the pertinent details of the simulations
are presented in Table 3 for all sub-basins. Arguably KAF4 represents the sub-basin with the least amount
of uncertainty in the observational data used, and apart from the generic uncertainties in the rainfall,
interception and evapotranspiration input data, a key issue is the extent of Dambo occurrence and the
effects on saturated surface runoff. The maximum CS value within the 10 000 ensembles is 3.563, very close
to the optimal value of 4, and all those (98) greater than 3.38, but with no %Bias or %Bias{ln} values
greater than +-5.0, were accepted as behavioural. There are very few differences between the minimum and
maximum parameter values within the behavioural ensembles compared to the total ensemble set, implying
a high degree of equifinality in the model, as is normally the case with a model with so many parameters.
The main differences are that the maximum behavioural interception, saturated surface runoff and recharge
parameters are somewhat less than the maximum input values. The runoff ratio for the behavioural ensembles
lies between 10.2% and 11.3%, while the full ensemble set range is 2.4% and 22.1%. The implication is that
the depth of AET (the main determinant of the overall water balance together with rainfall, which is not
considered uncertain for this sub-basin) is relatively insensitive to uncertainties in the PET observational
data (assumed to be +-10% of the available estimates). Further analysis of the simulations of interception
were achieved by setting only the interception and evapotranspiration parameters as uncertain. The results
confirmed that the overall model fit is almost totally insensitive to the simulated interception depth (in the
range of 56.4 to 175.1 mm y™!) and higher interception is compensated for by less effective evapotranspiration
from the moisture store (and vice versa). The main impact is a slight shift forwards in time in the seasonal
distribution of simulated stream flow for the higher interception depths.

The ranges of mean annual groundwater recharge values are 8.8 to 69.2mm and 7.2 to 154.8mm for the
behavioural and total ensemble sets, respectively. The BGS values for this part of the Zambezi are between
109 and 146mm, clearly suggesting that the available observational data are too uncertain to constrain the
model. There is a wide range of possible combinations of individual processes within the behavioural ensemble



set, and no clear differences between those with high and low input PET values, suggesting that uncertainties
in the PET data have a low impact on the simulation of individual processes. A relatively simple analysis of
Google Earth images to approximately quantify the surface area of Dambo features (Figure 4a), suggests that
their maximum area is “15% of the total sub-basin area. Figure 4b shows the relationship between relative
moisture content and saturated area calculated by the model for different values of the SSR parameter. The
Google Earth observational data suggest that this parameter could be constrained to between about 0.55 and
0.65, allowing for quite high uncertainty in the interpretation of the Google Earth images. This reduces the
behavioural ensemble set to 52, but has little impact on the possible combinations of individual processes.
Some of the grids for the SMAP 1.4 9km, 3 hour, soil moisture data showed characteristics that might be
expected from the presence of Dambos (more consistently wet during the wet season and slower drying into
the dry season, for example), and most of these could be linked to areas that can be identified as having a high
density of Dambos. However, there are other areas where Dambos are clearly visible on Google Earth that
do not show the same patterns in the soil moisture data. Part of the problem may be related to the spatial
resolution and part to the shallow depth of the observational soil moisture data sample. The ESA product
has a resolution of a quarter degree which is too coarse to identify Dambo areas, while the highest resolution
data SMAP_L2/Sentinel 1A/B 1 and 3km data, are available only for scattered portions of the basin and
every few days, making it difficult to clearly identify signals of the phenomenon investigated. Furthermore,
the limited data available for the higher spatial resolution soil moisture data showed very little variation
across the sub-basin. Similar conclusions were reached for the other sub-basins and the soil moisture data,
in their current stage of development, were not found to be useful for constraining the model or resolving
any uncertainties in process simulations.

Figure 5 shows the partitioning of total runoff for two ensembles (low and high recharge) and there are clearly
substantial differences in the way in which the model can simulate the observed stream flow response, that are
largely independent of any of the observational data uncertainties. No uncertainties in the observed stream
flow data have been included, largely because there are no stage-discharge rating data readily available upon
which to base quantitative estimates. However, they are expected to be low relative to other sub-basins and
the main impact would be simply to increase the number of ensemble members considered to be behavioural.
The other conclusions for this site would not substantially change.

KAF11 is similar to KAF4 except that the extent of Dambo features appears to be much less, and there
are additional uncertainties associated with water use for mining and irrigation (mostly from direct river
abstractions). The patterns within the behavioural ensembles are similar to KAF4, although the SSR
parameters are generally much higher, consistent with fewer Dambo features, while the recharge values tend
to be higher (42 to 100 mm y!). The runoff ratio varies between 20.5% and 22.5%, which might reflect the
smaller size, and more headwater location, of KAF11 relative to KAF4.

BAR3, BAR4, BAR7 and CHB2 represent the sub-basins of the upper Zambezi River and, apart from BAR3,
are mostly underlain by deep Kalahari sand deposits. The results for BAR3 are very similar to KAF4, with
behavioural runoff ratios of 9.1% to 10.0%, and recharge range of 24 to 70 mm y'. The uncertainty in the
distribution of process contributions is also similar to that shown in Figure 5. During the initial calibration
of the model (Hughes et al., 2020) acceptable simulations for BAR7 and CHB2 could not be achieved. It was
also concluded that the observed stream flow data for BAR7 were erroneous as they show much higher low
flows than at BAR5, BAR6 and ZAM1 further downstream and below the Barotse floodplain (within BARS;
Figure 2). The application of the uncertainty version of the model suggests that acceptable simulations are
obtainable at the sub-basin outlets, while the miss-match with observed data downstream remains a major
source of uncertainty in either the observational data, or the model (including the simulation of the wetland
impacts of the Barotse floodplain), or both.

The runoff ratios for BAR4 are much lower (5.4% to 6.2%), and surprisingly the behavioural recharge range
is only 12 to 38 mm y!, contrary to the expectation that groundwater would play an important role in
the area underlain by Kalahari sands. The model simulates the majority of the low flows as interflow
in all of the behavioural simulations, despite all the groundwater parameters having wide enough input



ranges. More consistent with expectations is the low contribution made by saturated surface runoff (no
clear indications of Dambos). In contrast, BART is totally dominated by groundwater in the small number
of behavioural ensembles (Table 3), with a narrow range of recharge values of 151 to 204 mm y*, and
higher runoff ratios (16.7% to 17.1%). CHB2 has an overall much worse fit to the observed data and very
few behavioural ensembles, low runoff ratios (3.8% to 4.2%) and recharge between 19 and 30 mm y™!. It
is also more dominated by groundwater outflow contributions (52 to 89% of total flow), and is therefore
similar to BAR7. One possible check on the simulations of the sub-areas dominated by Kalahari sands, and
especially the high low flows and low high flows suggested by the observed data at BARY, is to check the
downstream simulations at BARG (which are also consistent with the observed data at ZAM1 and ZAM2
further downstream). However, this assumes that the dynamics of the Barotse floodplain are simulated
appropriately. Unfortunately, the model is not able to simulate the high flows, as well as the delayed peak in
the wet season evident from the observed flows at BAR6 (Figure 6), despite quite good simulations for more
than 50% of the upstream area (BAR3, BAR4, BARY), and the fact that all the evidence suggests that most
of the ungauged sub-areas (BAR1, BAR2 and BARS) are unlikely to generate much higher wet season flows
(underlain by Kalahari sands). While Figure 6 illustrates that the wetland sub-model is able to account
for some of the peak flow delays, this is achieved (as might be expected) at the expense of the peak flows.
The uncertainty issues therefore remain unresolved; are the observed data and new simulations at BAR7
behavioural, and the main problem associated with the wetland simulations, or are the observed data and
simulations at BAR7 wrong, thus preventing the wetland sub-model from achieving a realistic downstream
simulation?

For the semi-arid Zimbabwe sub-basins, the CS values in Table 3 only use the CE an %Bias values because
the values based on log transformed flows are often misleading due to the large number of zero and very low
lows. The selection of behavioural ensembles is further limited to those that have similar numbers of zero
flow months to the observed data. These sub-basins are also impacted by water use (mostly agricultural, but
some urban and mining supplies). The estimates from the observational data (see also Hughes and Farinosi,
2020) are assumed to be relatively uncertain and the input parameter ranges have been set at +-20% of the
expected values. The real values could also be non-stationary over the gauging period (starting in the late
1950’s), adding another source of unknown uncertainty.

The behavioural ensembles for GWA3 do not have substantially different parameter ranges than the full
input range, despite there only being 11 ensembles accepted, further reinforcing the high level of equifinality
in the model structure. An exception is that the lower range of the input PET values is not included in the
behavioural set. The BGS recharge estimates (> 60 mm y™!) are far greater than the range of 2 to 17 mm
y! simulated by the model. The runoff ratio range is 4.5% to 5.3%, consistent with semi-arid conditions
and some water use. GWA4 has quite a large amount of water use and this is reflected in much lower runoff
ratios of 1.2% to 1.6%, while the minimum recharge estimates are higher than GWA3 (a range of 9 to 19 mm
y'1). There is a weak positive relationship for both GWA3 and GWA4 between the parameters determining
low flows (FT, POW, GW and GPOW) and the amount of assumed water use, suggesting some impacts of
uncertainty in observational data on water use. For MAZ2 it was not possible to reproduce the observed
number of zero flow months (42%) within the ensembles with the best CS values. While the simulated flows
dry season flows are very low, they are not actually zero. This is one of the more recent observed stream
flow records (2003 to 2017) and this result may be a reflection of hidden uncertainties in some of the other
sites related to the non-stationarity of the water use data. The range of runoff ratios is between 12.9%
and 13.9%, while simulated recharge is between (38 and 53 mm y!), both of which can be considered high
for this semi-arid sub-basin. This is one of the few sub-basins where a single parameter (GW) has a much
reduced range (15 to 20 mm month™) compared to the full input range (2 to 20 mm month™!). One of
the main problems with MAP2 is the fact that the total stream flow record (1951 to 2017) shows a great
deal of non-stationarity, with a wetter period up to about 1984 and a much drier period with less frequent
and generally lower flows from 1984 onwards. There is some evidence to suggest that the main wet season
rainfalls were lower in the later period, while a contributory effect may be changes in land and water use.
The extent to which this effects the models interpretation of the dominant processes is difficult to determine



without more reliable information. The main difference between this sub-area and the previous semi-arid
ones is the low combined contribution of interflow and groundwater outflow. MAP3 has a range of runoff
ratios of 5.0% to 6.9% and recharge depths of 1.8 to 20.5 mm y!, and appears to be dominated by adsorption
excess surface runoff. However, the minimum values for the other processes given in Table 3 are not very
representative of all the behavioural ensembles, which tend to have greater proportions of saturated excess
surface and groundwater runoff. MAP4 is quite similar to MAP3 with slightly higher runoff ratios, but
with a maximum recharge depth of 36 mm y ! amongst the behavioural ensembles. As with the previous
Zimbabwe sub-areas the observed stream flow data are non-stationary with lower overall discharge volumes
in the second half of the record (from the mid 1980s).

The Lake Malawi/Nyasa sub-basins are subject to rainfall and observed stream flow data uncertainties to
varying degrees (Table 2). MODIS actual evapotranspiration data (AET: 2000 to 2014) has been used to try
and resolve some of the uncertainties in the rainfall data, by comparing both CRU and UNIDEL mean annual
rainfall data with the values derived from a simple water balance of observed stream flow depth plus MODIS
AET depth (Table 4). However, this approach also has to take into account the potential uncertainties in
the observed stream flow data (Table 4, ‘Comments’ row), as well as any differences related to the choice of
the period used for the water balance checks (determined by the available stream flow data). Despite these
additional uncertainties, the decision to use either CRU or UNIDEL rainfall data for RUK2 and RUH2, was
quite clear, while either rainfall data set appears to be suitable for RUH1 and NAM1. For RUK1 and RUKS3,
neither rainfall data set appears to be suitable and both would need to be scaled to achieve a similar value
to the water balance derived estimate.

For RUKI1 the initial runs with the CRU rainfall data generate behavioural simulations that consistently
under-estimate the higher flows in the flow duration curve and have runoff ratios that are over 40%, a very
high value even for a topographically steep area. The model was re-run with UNIDEL rainfall scaled to
generate a mean annual value of "1 380 mm y™! (Table 4), after which the runoff ratio varies from 26.8%
t0 29.7%, the number of behavioural ensembles increases substantially and high flows are better estimated.
It was, however, necessary to adjust the input parameter ranges to account for the much higher rainfall
(notably the maximum soil moisture content was increased and the maximum values of the interflow and
recharge parameters, FT and GW, were reduced). The two entries in Table 3 for this sub-area indicate that
the effects of the input data uncertainties on the modelled processes is evident, with surface runoff normally
playing a more important role in the UNIDEL forced simulations. The range of possible recharge depths is
also greater in the UNIDEL simulations (29 to 144 mm y!), compared to the CRU forced simulations (72
to 139 mm y!). The initial uncertainty model runs for RUK2 did not yield ensembles that had as good
statistics as the original manual calibrations (Hughes et al., 2020), suggesting that the manual calibration
parameters were a relatively unique combination that could not be found even with 10 000 total ensembles.
Reducing the range of some of parameter inputs made a substantial difference and generated 85 behavioural
ensembles with runoff ratio and recharge ranges of 11.9% to 14.0% and 13.4 to 40.8 mm y!, respectively.
While most of the full ranges of the input parameters are represented in the behavioural ensembles, the
lower estimates of PET were not. Despite increasing the rainfall input to RUK3 (Table 4), the runoff ratios
remain extremely high (50.4% to 57.0%), while the simulated recharge is also very high (120 to 305 mm
y'1), and even if the UNIDEL rainfall data are used (Table 4), the runoff ratios remain at greater than 40%.
The distribution of runoff generation processes remains similar to the other Lake Malawi/Nyasa sub-basins,
although the high contribution of intensity excess surface runoff is more consistent across the ensembles than
in other sub-basins. There remains a large amount of uncertainty in the input climate data, as well as the
response characteristics of this sub-basin.

The runoff ratio range for RUH2 is high at 38.2% to 43.0%, with a recharge range of 65 to 312 mm y™!, and
as with some other sub-basins the lower PET estimates do not seem to be valid. Both of these values are
high and the estimated recharge is quite close to the BGS estimates (7146 mm y'). RUHI is downstream of
RUH2 and in order to search for behavioural ensembles independently of the effects of RUH2, the parameters
of RUH2 are fixed at values representing one of the best ensembles. RUH1 has the highest number of
behavioural ensembles and the highest maximum CS value of all the sub-areas. The range of runoff ratios

10



is 21.9% to 26.9%, and recharge varies from 16.8 to 163 mm y! (a wide range that also includes the BGS
estimate). Table 3 illustrates that behavioural results can be obtained with a mix of different processes
and this is further illustrated in Figures 7 and 8, and Table 5, based on four selected ensemble members.
They are those with the lowest and highest proportion of saturated area surface runoff, and the lowest and
highest proportion of total low flow processes (interflow and groundwater runoff). Generally, a decrease in
saturated area surface runoff is associated with increases in both intensity (adsorption) excess surface runoff
and interflow, while groundwater runoff is quite stable across all ensemble members (Figure 8). The range
of process proportions amongst the ten best ensemble members is much lower, with both surface runoff
processes being “25%, interflow between 6% and 18%, while groundwater runoff is 33% to 40%. A closer
inspection of all the simulated years (1991 to 2008), suggests that different behavioural ensemble members
perform better in some years than others. To what extent this can be associated with any uncertainties
in the accuracy of the input climate or observed stream flow data, or is just part of the overall modelling
uncertainty, is almost impossible to resolve without more information. For NAMI1 the first noticeable effect is
the consistently low values of the saturated surface runoff parameter (SSR) within the behavioural ensembles,
and this result is appropriate given clear evidence of Dambo features. The range of runoff ratios is 9.5% to
11.1%, and recharge depths is 4.8 to 30.0 mm y', both of which are quite similar to the results for RUK2
(in a similar geographic location). As already noted for some of this group of sub-basins, the lower estimates
of PET are not included in the behavioural ensembles.

Tables 2 and 4 both refer to some of the uncertainties in the observed stream flow data for the Lake
Malawi/Nyasa sub-basins, but these have largely been ignored in the presentation of the results. The main
reason is that the differences between certain parts of the records are far too large to be considered just
uncertainties. Figure 9 illustrates the problem in three sub-basins, and they all have substantial periods of
missing data within them. The majority of the total record (1957 to 2009) for NAM1 shows a consistent
response and it is only the last 9 years where all flows are higher by a factor of "4.7 on average, a figure
too high to attribute to any reasons apart from errors. A similar situation arises for RUH1 (total record
of 1972 to 2018), where the stream flows for the last 6 years are much higher, after an extended period of
5 years of almost totally missing data. One of the main problems with RUH1 is that almost all of the low
flow months are missing after 2012. For RUK3 it is the earlier part of the record where the problems exist,
while several years in the middle (1981 to 1994) and the later (2003 to 2018) period are consistent with each
other. This may be related to an error in the data records and failure to convert stage observations in feet
to metres. This error has been noted in some other early Tanzanian records, and is quite simple to fix if
the raw observational data and rating curve information are made available (which they are typically not).
However, there is an additional uncertainty issue in RUK3 and the model fit for the later period is far better
than the middle period, the former having a maximum CS value of 3.148, compared to 1.223 for the later
period (CS = 3.112 for the total period used in the model). The implication is that very different results
would be obtained if these two periods were used separately.

DISCUSSION AND CONCLUSIONS

The CS statistic used in this study represents a useful approach for identifying the most behavioural ensemble
members. The part of the statistic that includes the % bias objective functions assesses the long-term water
balance of the simulations, while the Nash coefficients assess the simulations with respect to the individual
monthly stream flows. Table 3 illustrates that there is quite a wide range of maximum CS values and a large
part of this variation is expected to be related to spatial variations in the representation of real individual
monthly rainfall values, in the absence of enough local data. However, one of the key general observations is
that uncertainties in some of the climate inputs and the observational stream flow data are unlikely to be the
main effects causing uncertainties in the relative proportions of the main four runoff generation processes.
The results suggest that the equifinalities in the model structure will always dominate. While it might be
postulated that the behavioural ranges given in Table 3 could contain some outliers, Figure 10 suggests that
this is generally not the case. The weighted cumulative frequency is based on the CS values for each ensemble
member (i.e. giving slightly more weight to those with better overall fits to the observed data). For RUH1 the
ranges of all processes could be reduced slightly as the curves have flattened tops and bottoms. This is not
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the case for the semi-arid MAZ2 sub-basin. Clearly, there are only some combinations of different processes
that are behavioural (or not), but as noted above (and illustrated in Figure 7) for RUHI, isolating these
combinations is not straightforward and simulations of similar total stream flow response can be made up of
a number of different combinations, particularly in the wetter sub-basins where all four processes can play
a substantial role. While many of the uncertainties will be associated with inadequate representation of the
real monthly rainfall variations, additional uncertainties exist in some of the Lake Malawi/Nyasa sub-basins
where the rainfall data (both CRU and UNIDEL) can be systematically biased (Table 4). However, even
though this may result in unrealistic simulations of the runoff ratio, the distribution of simulated processes
(and the associated uncertainties) remains broadly the same, as illustrated by RUK1 in Table 3.

The best way to reduce some of the uncertainties is to add more observational data, even if those data are
not directly quantifying the model process components, or are themselves uncertain. In this study MODIS
AET data have been used in some sub-basins (Table 4) to resolve some of the long-term water balance
uncertainties, largely related to the rainfall data. LAI data have also been used to guide the parameterisation
of the interception parameters in the model, but mostly in relative terms across the sub-basins in different
parts of the basin, as well as between the warm wet season and cooler dry season. However, there are too
many uncertainties in the conversion of LAI values reported in the literature (see for example De Groen and
Savenije, 2006; Wu et al., 2019; Navar, J., 2020) into interception depths for different rainfall regimes to
allow the LAI values to be used directly to constrain simulated interception depths. The example provided
for KAF4 also suggests that the model can compensate for quite large uncertainties in the simulation of
interception depth by changing the simulations of soil moisture evapotranspiration without substantially
affecting the accuracy of the stream flow simulations.

Some of the example sub-basins show clear evidence of Dambos (KAF4, BAR3, NAM3 and RUK2) on Google
Earth imagery, while others show some evidence (KAF11, BAR3, GWA3, MAZ2 and RUH1). A previous
study linked these features to the occurrence of saturation excess surface runoff and demonstrated improved
simulations when this process was included in the model (Hughes and Mazibuko, 2018). It should therefore
be possible to reduce the uncertainty ranges of the ‘Sat. surface’ column in Table 3 by conducting a more
detailed analysis (rather than the simple visual assessment used here; Figure 4) of the frequency of Dambo
occurrence. Figure 8 illustrates that reducing the saturated area uncertainties, the uncertainties in at least
some of the other process simulations could also be reduced. During this study it was thought that remotely
sensed soil moisture data might be useful to support this type of analysis. However, while some of the
patterns in the observational data could be linked to landscape features, most could not. It is possible that a
more detailed investigation of the different soil moisture remote sensing data available might reveal improved
linkages with landscape features and hydrological processes, and therefore offer some benefits for setting up
models. However, this was rather beyond the scope of this study and should probably be conducted in
areas where more ground-truth data are available than in the large sub-basins of the Zambezi River basin.
Further development of these earth observation data, however, could represent an important contribution
to understanding processes in data scarce areas, as demonstrated recently for the correction of precipitation
reanalyses data (Brocca et al. 2019), or for the validation of river flow observation data (Brocca et al., 2020).

Within South Africa there is a national coverage of groundwater recharge estimates (DWAF, 2005), which
has proved to be very useful for constraining model simulations and removing some of the equifinality in the
simulation of low flow generation processes (Tanner and Hughes, 2013). Unfortunately, the BGS estimates
appear to be too uncertain for that purpose in the Zambezi River basin. Some of the uncertainty in the
groundwater recharge estimates for this study are also related to the inclusion of a riparian evapotranspiration
component in the model. To achieve the same groundwater outflow pattern, it is possible to have relatively
high recharge combined with a large riparian area or vice versa. Any data that could limit the range of the
riparian loss parameter, would therefore be useful. In theory, it should be possible to use remote sensing
data for this purpose (to identify denser vegetation, or enhanced actual evapotranspiration areas close to
channels). In practice, this could be quite difficult and time consuming for the large areas covered by the
Zambezi sub-basins.
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In those basins where water use is expected to have a substantial impact on gauged stream flows (mostly the
semi-arid Zimbabwe sub-basins used in this study), the uncertainties in the water use data has an inevitable
impact on the simulated processes. This effects mostly low flows (through groundwater recharge and outflow
processes) as the water use volumes are relatively small compared to the wet season stream flows. While
issues of spatial scale pervade the whole modelling exercise due to the large size of the sub-basins, the water
use uncertainties can be exacerbated by the model spatial structure, particularly when the main water uses
are from distributed farm dams. For example, in MAZ2 the majority of the water use and farm dams
are in the headwater areas, which may be higher runoff areas on the basis of rainfall spatial variations.
The proportion of the sub-basin area that contributes to these dams (a model parameter) should therefore
take into account the expected ‘sub-grid’ variations in runoff generation, introducing yet another source of
uncertainty.

For some of the sub-basins it can be quite easily demonstrated that there are large uncertainties in both the
forcing rainfall data, as well as parts of the observed stream flow data records used to evaluate the simulations.
Most of these occur within the lake Malawi/Nyasa group of sub-basins (Tables 2 and 4), but tend to have
little influence on the distribution of simulated processes. There are, of course, some uncertainties in the
rainfall data (including those inherent in the use of a monthly time step) that are impossible to quantify
without more local observational data, but these are reflected more in the overall quality of the simulations,
rather than the simulation of individual processes. The group of sub-basins above the Barotse floodplain
represent a situation where some identified uncertainties in the observed stream flow data could impact on
the dominant processes simulated by the model. There are some incompatibilities between the upstream
(BAR3, BAR4 and BARTY) and downstream (BAR5 and ZAMI) observed data that cannot be readily
accounted for by the impacts of the wetland (Figure 6). The main issue appears to be in the representation
of the peak wet season flows, particularly from the quite large sub-basin BAR7. The simulations for BAR7
are acceptable compared to observed stream flows and the process representations (mostly interflow and
groundwater outflow) are consistent with the other sub-basins underlain by deep Kalahari sand deposits
(Table 3). However, to achieve a match to the downstream observed data, this sub-basin would require
much higher wet season peaks generated by surface runoff processes, similar to BAR7 (Table 3). This study
was not able to resolve these incompatibilities and further assessments of the hydrological responses in the
western headwaters of the Zambezi are strongly recommended.

In terms of the potential benefits to simulating ungauged sub-basins, referred to in the introduction, there
is still too much uncertainty in the simulation of individual processes and not enough observational data to
support their identification. The use of regionalised indices of the total response of sub-basins, both interna-
tionally (Westerberg et al., 2016), as well as for southern Africa (Hughes, 2019; Kabuya et al., 2020), seem to
remain the best recommendations for dealing with ungauged sub-basins. This paper therefore reaches similar
conclusions to McMillan (2020) that some of the indices (or signatures) are related to multiple processes
that are difficult to disentangle. This study suggests that improved, model independent, quantification of
groundwater recharge depths offers some potential gains, as does the mapping of landscape features (Dambos
and others) that are likely to generate saturation excess surface runoff.
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SOFTWARE AND DATA AVAILABILITY
The Pitman model is available as part of the SPATSIM modelling framework available from
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https://www.ru.ac.za/iwr/research/spatsim/. Further details about the Pitman model are included in the
documentation included with the download (see the Pitman_Guide.pptx file in the SPATSIM_V3/doc folder).
The model setup (including the forcing data, parameter sets, simulation results, etc.) can be obtained on
request from one of the authors, subject to some restrictions on the distribution of the observed streamflow
data.
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Figure 1 Structure of the main sub-basin runoff generation components of the Pitman model (the model
parameter symbols are shown in italics, while the full names are given for the state variables, such as 1Q,
RCH, S, etc.).

Figure 2 Zambezi River basin, riparian countries and simulated sub-basins (the 19 gauged areas used in
this study are shaded in grey). The gauge at BARG is used to help resolve some of the uncertainties in the
upstream area.

Figure 3 Minimum and maximum mean monthly LATI values (Mao and Yan, 2019) for all sub-basins and
some sample seasonal distributions.

Figure 4 A Google Earth image of part (72 000 km?) of the KAF4 sub-basin showing the light coloured
Dambo features (a), and the relationship between simulated relative soil moisture content and saturated
area for different SSR parameters of the Pitman model (b).

Figure 5 Runoff processes simulated by two equally behavioural ensembles, with low and high groundwater
recharge estimates.

Figure 6 Simulated inflows and outflows for the Barotse floodplain sub-basin (BAR5) and observed flows at
BARG.

Figure 7 Observed and simulated (four ensemble members) stream flows for RUH1. The simulations are
drawn from the behavioural ensembles with some extremes of different process representations.

Figure 8 Details of the process simulations for the same four ensembles used in Figure 7 for RUH1 (note that
differences in the responses for individual years between Figure 7 and 8 are associated with the inclusion of
upstream flows from RUH2 in the total stream flow data shown in Figure 7).

Figure 9 Flow duration curves for some of the Lake Malawi/Nyasa sub-basins using different periods of the
observed stream flow records.

Figure 10 Weighted (using the CS values) cumulative frequency distributions of process proportions for all

the behavioural ensemble members for RUH1 and MAZ2 sub-basins.

Table 1 Details of the gauge station data used in the study.

Sub-basin  River Location National Gauge ID  Record length
KAF4 Lunga River Chifumpa ZAM4-560 1959-2005
KAF11 Kafue River Smith Bridge ZAM4-130 1959-2005
BAR3 Kabompo River = Watopa ZAM1-950 1958-2016
BAR4 Luanginga River Kalabo ZAM2-250 1961-2013
BARY7Y Zambezi River Chavuma ZAM1-105 1959-2014
CHB2 Linyanti River Sajawa BOT 6414 1980-2003
GWA3 Shangani River Gwayi Confluence Flumes ZIM A36 1961-2014
GWA4 Gwayi River Dahlia ZIM A38 1966-2017
MAZ2 Mazowe River Mazowe Bridge ZIM D75 2003-2017
MAP2 Umfuli River Twyford Weir ZIM C12 1950-2017
MAP3 Umswesws River Claw Dam ZIM C48 1957-2016
MAP4 Sebakwe River Lower Ziwagwe Dam ZIM C36 1955-2017
RUK1 Songwe River Mwandenga MAL 9B7 1985-2012
RUK2 S. Rukuru River  Mlowe MAL 7G18 1985-2009
RUK3 Kiwira River Ipyana TAN 1RC2A 1986-2017
RUH1 Ruhuru River Kilonge TAN 1RB3 1991-2007
RUH2 Ruhuru River Masigira TAN 1RB2 1971-2017
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Sub-basin

Location

National Gauge ID  Record length

NAM1

Roadbridge

MAL 5C1

1958-2000

Table 2 Summary of the gauged sub-basins used in the study and some comments on the sources of obser-

vational data uncertainties.

Other key
Assume quality of observational data
Sub-basin Area (km?) forcing climate data uncertainties
KAF4 21 582 Good
KAF11 8 310 Good Effects of water use.
BAR3 69 933 Good Very high in stream
flow data for some
sub-basins & high in
recharge estimates
related to underlying
sandy aquifer.
BAR4 33 284 Good
BAR7 78 253 Good
CHB2 35 002 Good
GWA3 17 965 Moderate (the key Effects of small farms
uncertainties are in the dams & water use
expected high level of (including direct river &
spatial variation in these = groundwater
semi-arid areas). abstractions). MAP3 and
MAP4 are also impacted
by upstream major dams
& their operation.
GWA4 19 925
MAZ2 13 224
MAP2 5243
MAP3 2 407
MAP4 4 333
RUK1 3 905 Poor Moderate to high in
stream flow data.
RUK2 12 007 Moderate
RUK3 1 706 Poor Very high in stream
flow data.
RUH1 14 331 Good High in stream flow
data.
RUH2 1944 Moderate to poor Moderate to high in
stream flow data.
NAM1 10 532 Good Moderate to high in

stream flow data.

Table 3 Summary of results, including the maximum statistic value (CS), number of behavioural ensembles
and range of process proportions simulayed by the model.



Sub-basin Max. CS No. behavioural Processes range as % of total runoff Processes range as % of total runoff

Sat. Surface Int. excess surface

KAF4 3.563 98 8.5 -27.6 2.6 —-21.4
KAF11 3.469 34 0.0 - 14.5 1.9 -22.1
BARS3 3.507 56 6.7 — 30.4 3.6 —16.8
BAR4 3.305 20 0.0 - 13.7 0.6 - 15.8
BARY7 3.501 12 0.0-1.7 0.5-6.1
CHB2 2.669 6 0.0-0.8 0.0 -3.0
GWA3 1.347 11 20.6 - 32.0 28.3 - 58.8
GWA4 1.405 17 0.0 -9.0 26.8 - 63.4
MAZ2 1.454 59 9.6 - 24.7 20.6 - 50.0
MAP2 1.460 8 13.9 - 41.9 10.0 - 64.3
MAP3 1.500 552 0.0 - 40.8 17.2 - 99.7
MAP4 1.465 121 0.0 - 29.1 14.6 — 91.5
RUK1 (CRU) 3.191 19 0.0-84 11.7 — 46.1
RUK1 (UNI) 3.217 207 0.0-314 7.3 - 66.2
RUK2 3.238 84 21.0 - 37.6 4.9 -27.0
RUK3 3.112 96 0.0-17.2 27.0 — 60.6
RUH1 3.658 986 4.1 - 30.5 5.8 = 50.0
RUH2 3.283 75 5.6 —21.2 7.2 -23.7
NAM1 3.358 34 21.3 - 444 5.9 - 45.0

Note: Max. CS for the Zimbabwe sub-basins (GWA3 to MAP4) do not include the log transformed statistics
(i.e. max. value = 2) and the behavioural ensembles are further constrained by the number of months of
zero flows. The behavioural ensemble members for sub-basins with maximum CS values of >3.2 are chosen
as those with CS values of >0.05*MaxCS, the others are chosens as those with CS values of >0.1*MaxCS
(to obtain enough behavioural ensemble members to analyse the range of different process proportions).

Table 4 Assessment of combined observational uncertainties for the Lake Malawi/Nyasa sub-basins.

WB

component Sub-area Sub-area Sub-area Sub-area Sub-area Sub-area
RUK1 RUK2 RUK3 RUH1 RUH2 NAM1

Stream flow 621.6 111.7 901.2 310.0 540.0 104.6

(mm y)

MODIS AET 759.6 855.4 877.2 876.0 879.6 826.4

(mm y')

Water 1381.2 967.1 1778.4 1186.0 1419.6 931.0

balance

rainfall (mm

y)

CRU rainfall 964.8 966.7 1399.2 11724 1174.8 911.0

(mm y')

UNIDEL 1628.4 844.8 2214.0 1204.8 1381.2 912.8

rainfall (mm

y)
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WB

component Sub-area Sub-area Sub-area Sub-area Sub-area Sub-area

Comments Observed Observed Observed Observed Observed Observed
stream flow flows appear stream flow data after stream flow flows after
data after consistent data before 2008 data before 2000 appear
2000 is throughout 1972 is much appears to 2000 is “10% to be too
higher than the record higher. be very higher. high.
1985 to (1986-2008). wrong.
2000.

Decision Use scaled Use CRU Use scaled Use CRU or Use Use CRU or
UNIDEL UNIDEL UNIDEL UNIDEL UNIDEL

Table 5 Proportions of different processes represented in the four ensemble members shown in Figure 8 for
sub-basin RUHI.

Process Ensemble member description Ensemble member description Ensemble member description Ense

Lowest Sat. Area Highest Sat. Area Lowest Low Flows High
Sat. surface 4.1% 30.6% 26.1% 11.5¢
Int. excess surface 45.7% 9.5% 24.2% 20.8¢
Interflow 22.2% 4.9% 7.6% 34.6°
GW Outflow 23.9% 24.3% 15.8% 21.5¢

|Interception & evapotranspiration|
A
1
1
1

lInfiltration excess surface runoff (1SQ)|

-————>

Soil moisture

Riparian evap. from GW/|
A

L
S<ST 0
saturated area surface runoff (S5Q) |
Interflow (1Q) i
\ :
1
> 1
|Recharge (RCH)|

[Gw outflow (GwQ) | /)Y

IRCH = GW * (S/ST)POW |

la = FT * ((s-5L)/(ST-5L))"°"]

[SER = ((S-ST*SSR)/(ST-ST*SSR))*—>{55Q = SER * Rainfall|
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