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Abstract

The control of nutrient availability is critical to large-scale manufacturing of biotherapeutics. However, the quantification
of proteinogenic amino acids is time-consuming and thus is difficult to implement for real-time in situ bioprocess control.
Genome-scale metabolic models describe the metabolic conversion from media nutrients to proliferation and recombinant protein
production, and therefore are a promising platform for in silico monitoring and prediction of amino acid concentrations. This
potential has not been realized due to unresolved challenges: (1) the models assume an optimal and highly efficient metabolism,
and therefore tend to underestimate amino acid consumption, and (2) the models assume a steady state, and therefore have
a short forecast range. We address these challenges by integrating machine learning with the metabolic models. Through
this we demonstrate accurate and time-course dependent prediction of individual amino acid concentration in culture medium
throughout the production process. Thus, these models can be deployed to control nutrient feeding to avoid premature nutrient

depletion or provide early predictions of failed bioreactor runs.

Short Communication

Chinese Hamster Ovary (CHO) cells are widely used to manufacture complex biotherapeutic molecules at
large scales. Industrial bioprocesses ensure high product yield and quality by maintaining favorable growth
conditions in cell culture environments, which requires careful monitoring and control of nutrient availability.
Chemically-defined serum-free media can contain dozens or >100 components(Ritacco et al., 2018), but key
nutrients include proteinogenic amino acids, which are direct substrates and regulators(Duarte et al., 2014;
Fomina-Yadlin et al., 2014) of proliferation and protein synthesis. Unfortunately, conventional methods for
amino acid quantification based on liquid chromatography and mass spectrometry are time-consuming and
difficult to use for decision making and control of cell culture. Alternate spectroscopic approaches have been
sensitive to a limited number of amino acid species(Bhatia et al., 2018). Here we present a computational
method to forecast time-course amino acid concentrations from routine bioprocess measurements, facilitating
a timely and anticipatory control of the bioprocess (Figure 1).

At the foundation of our method is a genome-scale metabolic network model, which accounts for the complex
conversion from media nutrients to biomass and recombinant protein production. Such models have been in-
creasingly utilized for CHO cells(Hefzi et al., 2016; Calmels et al., 2019; Huang & Yoon, 2020) and bioprocess
applications(Sommeregger et al., 2017; Zhang & Hua, 2016), such as predicting clonal performances(Popp et



al., 2016), identifying metabolic bottlenecks(Zhuangrong & Seongkyu, 2020), and optimizing media formu-
lation(Fouladiha et al., 2020; Traustason et al., 2019). Metabolic network models can also estimate amino
acid uptake rates necessary to experimentally support observed proliferation and productivity(Chen et al.,
2019). However, challenges have limited their practical application.

First, metabolic network models are typically highly complex but under-constrained, and therefore are easy
to overfit. This is mitigated by training the model on a variety of bioprocess conditions and metabolic
phenotypes. Second, metabolic network models assume that cells operate at some metabolic optimum,
and thus tend to describe an idealized metabolism specifically fit to the assumed objective (e.g., biomass
production(Feist & Palsson, 2010; Szeliova et al., 2020), minimization of redox(Savinell & Palsson, 1992)).
Third, for the present purpose, these models need to predict amino acid consumption fluxes, typically on the
order of 10mmol-gpw*-hr'!(see Methods), from input data that are multiple magnitudes larger, such as
growth rate and glucose consumption (107! to 10?mmol-gpw*-hr'!). The preceding two challenges increase
prediction error. Lastly, metabolic network models assume a steady state, which reduces the range of forecast.
Typically, input data from one day are used to make predictions for the same day. However, such predictions
cannot be extended to multiple days or subsequent culture phases, as cross-temporal shifts in metabolism
would violate the steady state assumption. Thus, model predictions of amino acid concentrations can be
overfit, ideal, and near-sighted — all of which dilutes their practicality for industrial bioprocess control. Here
we demonstrate that these weaknesses can be addressed in a data-driven manner by coupling a metabolic
network model with machine learning.

We developed this hybrid approach on a diverse set of 10 CHO clones with different growth and productivity
profiles from two different fed-batch production processes. These CHO clones were subject to different bio-
process conditions and recombinant antibody identities (see Methods), resulting in a variety of phenotypes
and productivity performances (Fig. S1). For example, several high-performing clones were exceptional-
ly proliferative or productive, suggesting an efficient conversion from nutrients to biomass or recombinant
protein product. Other clones performed these conversions at lower rates, suggesting attenuated metabolic
activity or inefficient resource utilization. The CHO cells adjusted their nutrient uptake according to these
various metabolic phenotypes, leading to diverse amino acid consumption patterns (Fig, S2). For example,
the consumption of glucose and serine differed by several fold across conditions and time. Furthermore, dif-
ferent clones varied in their consumption or secretion of key metabolites such as lactate, alanine, glycine,
and glutamine.

We sought to predict these diverse consumption behaviors using a tailored model of CHO metabolism(Schinn
et al., 2020). As input information, we utilized the following routinely measured industrial bioprocess data: (1)
viable cell density and titer measurements, from which growth rate and specific productivity are calculated
(Methods, equation 1), and (2) bioreactor concentrations of glucose, lactate, glutamate and glutamine,
from which their respective consumption rates are calculated. These measurements were used as boundary
conditions by constraining the fluxes of biomass production, recombinant protein synthesis and consumption
of the four metabolites to observed values. Subsequently, we used Markov chain Monte Carlo sampling
of metabolic fluxes(Schellenberger et al., 2011) to sample the range and magnitude of all reaction fluxes
to calculate the likely uptake fluxes of the remaining 18 proteinogenic amino acids (see Methods). These
predictions were applied to the CHO clones across 8 days of a 12-day production run (days 4 to 11), resulting
in a total of 80 individual predictions.

We evaluated the resulting model predictions in two ways. First, we examined the differences in model
predictions and experimental measurements of amino acid uptake and secretion (Figure 2A). For most amino
acids, this difference was small compared to the scale of input data, suggesting that metabolic models can
describe the conversion from nutrients to biomass and recombinent proteins. Second, we examined the fold
changes between model predictions and experimental measurements. These fold change errors are summarized
in Figure 2B by their mean and variance across the 80 observations. Overall, fold change error varied
significantly across amino acids. For example, the model predicted some essential amino acids consistently
well — e.g. phenylalanine, cysteine and tryptophan (fold change [?] 1), but predicted others poorly — e.g.



alanine, lysine, glycine, and methionine (fold change [?] 0). Overall, the sizeable fold change errors for
many amino acids confirm the difficulty of using metabolic network models alone to predict amino acid
consumption.

Notably, the model systematically underestimated consumption rates for almost all amino acids (fold change
< 1). This is likely because the model doesn’t consider certain metabolic inefficiencies — e.g. CHO cells
consume more amino acids than needed for the observed production of biomass and recombinant protein,
and catabolize them as byproducts(Mulukutla et al., 2017). Furthermore, the variance of fold change error
was relatively low ([?]1) for most amino acids. This suggests that the difference between model ideality and
biological reality remained consistent across many clones and conditions.

We hypothesized that this consistent gap could be bridged with data and statistical modeling. We constructed
a series of linear regression models to ‘correct’ the predictions from metabolic modeling, using growth rate
and the predictions from the metabolic model as explanatory variables (Methods, equation 2). The 80
observations were randomly divided into a training dataset and validation dataset, consisting of 48 and 32
observations, respectively. The regression coefficients were first estimated from the training dataset and
then applied to the validation dataset. According to validation results, the regression models substantially
improved predictions, as fold change error approached unity for most amino acids (Fig. 3B). As exceptions,
predictions for alanine, glycine and histidine were not reliably improved (Fig. 3, red). These results were
replicated in additional validation studies involving four distinct clones (Supplementary Document).

These results show that our hybrid modeling approach estimates amino acid consumptions well for a small
timescale of 1 day, when the steady state assumption holds true. This assumption is not valid at larger
timescales of multiple days, where nutrient consumption declines asymptotically as cellular metabolism shifts
from exponential growth phase to stationary phase. However, we found this limitation could be remedied
by modeling the multi-phase decline in amino acid consumption with a simple sigmoid function (Methods,
equation 3; line in Fig. 4), which can be fitted from only a few datapoints. Specifically, we further adapted
our hybrid modeling approach by first predicting amino acid consumption rates of several early culture days
as heretofore described. Then, these datapoints were used to fit a sigmoid function that described the entire
consumption profile, including later culture days (Fig. 4A). Using this approach, we accurately predicted
the time-course consumption rates of 13 out of 18 amino acids (Spearman p > 0.65; Fig. 4B), with only few
amino acids remaining difficult to predict (alanine, glycine, and histidine). Notably, our approach accurately
predicted the consumption profiles of amino acids that are highly abundant in recombinant antibodies (e.g.
serine, valine, and leucine)(Fan et al., 2015), or that complicate media formulation due to low solubility
(e.g. tyrosine). These results highlight the method’s value in monitoring and forecasting the bioreactor
environment,.

In summary, the presented modeling workflow forecasted the entire amino acid consumption profile from
early bioprocess measurements, facilitating anticipatory and in situ control of bioreactor nutrient availabil-
ity. This was realized by a novel combination of metabolic and statistical models. A metabolic network
model estimated amino acid uptake rates necessary for observed proliferation and productivity, assuming
an ideally efficient metabolism and steady state conditions. Two subsequent regression models refined these
predictions by offsetting prediction errors empirically and by describing the time-course relationship of in-
dividual predictions. Our efforts are part of a growing trend of synergizing metabolic network models with
machine learning methods(Zampieri et al., 2019), and demonstrates the power of hybrid modeling for on-line
control of bioprocesses.

Methods

Cell culture experiments

Two production fed batch processes were used, Fed batch 1 and Fed batch 2. Both fed batch processes used
chemically defined media and feeds over the 12-day cell culture. Fed batch 1 used a glucose restricted fed



batch process called HIPDOG(Gagnon et al., 2011). Glucose concentration is kept low during the initial
phase of the process, Day 2-7, through intermittent addition of feed medium containing glucose at the
high end of pH dead-band and then glucose was maintained above 1.5 g/L thereafter, restricting lactate
production without compromising the proliferative capability of cells. In Fed batch 2 a conventional cell
culture process was used where glucose was maintained above 1.5 g/L throughout the process.

For both process conditions, bioreactor vessels were inoculated at 2 x 10° viable cells/mL. The following
bioprocess characteristics were quantified daily using a NOVA Flex BioProfile Analyzer (Nova Biomedical,
Waltham, MA): viable cell density, average live cell diameter and concentrations of glucose, lactate, gluta-
mate, and glutamine. Viable cell density data were converted to growth rates by following equation to be
compared to model-predicted growth rates.

_ 1 Avcd
Growth rate = 5 Kioe

Flash-frozen cell pellets (10° cells) and supernatant (1 mL) were collected from bioreactor runs for each
sampling day. Collected samples were sent to Metabolon (Metabolon Inc, Morrisville, NC) for metabolomics
analyses. Metabolomics measurements were used as input data to the model by converting their units to
model units of mmol per gram of dry weight of cell per hour.

Metabolic network modeling

We used a previously described metabolic network model that is tailored to the investigated CHO
clones(Schinn et al., 2020). Experimental measurements for clone and culture day were used to constrain
model reactions for biomass production, monoclonal antibody secretion and consumption of glucose, lactate,
glutamate, and glutamine. Then, we computed distributions of likely amino acid consumption rates by
stochastically sampling 5000 points within the model’s solution space via a Markov chain Monte Carlo sam-
pling algorithm, as described previously(Megchelenbrink et al., 2014; Nam et al., 2012), usingoptGpSampler
(Megchelenbrink et al., 2014) and COBRApy(Ebrahim et al., 2013). Upon completion, the sampled distri-
butions’ statistical features were noted — that is, their mean, median, standard deviation, 25 percentile, and
75 percentile values.

Statistical methods

For each amino acid, the mean of the sample distribution was interpreted as the likely consumption rates.
These predicted consumption rates deviated from experimental observations by a consistent fold amount.
Fold change error was also correlated with culture day, as the model predicted the exponential growth phase
better than the subsequent stationary phase. Therefore, the model predictions were refined by a regression
model as follows, with growth rate and the predictions themselves as explanatory variables.

Corrected prediction = Sg + (1 e prediction + (2 e growth rate

The time-course amino acid consumption profiles were described mathematically by the Monod equation, as
follows:

time
B1+time

Consumption rate = [y @

Here, By represents the minimum consumption rate which the cells asymptotically approach during later sta-
tionary phase. The variable (3; is the half-velocity constant, or the time point at which the consumption rate
reaches half of 3g. These analyses were carried out and visualized using COBRA Toolbox 2.0(Schellenberger
et al., 2011) in MATLAB R2018b (MathWorks; Natick, Massachusetts, USA)
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Figure 1: Overview of method . A novel combination of a metabolic and statistical models forecast
the time-course amino acid consumption profiles in CHO cell cultures, as follows: (1) Routine bioprocess
measurements are used as input data. (2) A metabolic model initially estimates early amino acid consump-
tion rates.(3) A regression model refines these predictions. (4) These refined predictions are fit to a curve
describing the time-course profile. (5) This would allow for anticipatory control of amino acid availability in
bioreactors.
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Figure 2: Metabolic network model shows moderate accuracy in estimating amino acid con-
sumption . (a) Model predictions compared well to experimental observations, given the scale of input
data such as the consumption rates of glucose and lactate (upper right, filled circles). (b) The fold change of
model predictions and experimental measurements was also explored. The mean and variance of fold change
across all 10 clones and 8 timepoints are shown. Prediction accuracy was particularly good for phenylalanine,
tryptophan and cysteine, whose fold change approached unity (red line, x-axis). However, for many amino
acids, model predictions were prone to significant fold change errors. Notably, the relatively low variance in
fold change error (y-axis) suggests that predictions could be improved empirically.

X=B0+Bl -x+B2-p 1 2
leu -
o gly g
_2:% 1 trp met z
S his A
=l ser trp g
Lro. phe ile . phe =
. 05" arg — 5 Z
> met cys =3
8 . ash oy ® oys =1
) lle lys lysfo vl <
2 t¥r:r val pr)thr =
A 0 ala pro g—
H asn | =
asp 0 8

0 0.5 1 1.5 1 1.2 1.4

Mean Fold Change

Figure 3: Statistical learning refines predictions of the metabolic model. A regression model
was devised for each amino acid. The variables y, x, and x’ represent growth rate, predicted consumption
rate and revised consumption rate, respectively. The regression coefficients were fitted from the training
dataset. (a) Here we show the prediction qualities by fold change for a validation dataset before refinement
by regression. The mean and variance of fold changes are comparable to the entire dataset (Figure 2b).
(b) The prediction values were transformed by the regression model. Prediction of nearly all amino acids
approach unity (red line). The datapoints are colored by the variance in fold change after transformation.



Amino acids with high variance in fold change (y [?] 1, red) — alanine, glycine, arginine and histidine — failed
to be reliably corrected by the regression model.
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Figure 4: Curve fitting forecasts amino acid profiles . (A) Bioprocess data from days 4-7 are
used to estimate tyrosine consumption rates (empty circles). These estimations are used to parameterize a
sigmoid curve (line; see Methods, equation 3) that describes the consumption profile for the entire culture
duration. This predicted time-course consumption profile agreed well with experimental measurements (filled
circle). Time-course profiles of other amino acids are provided in Supplementary Figures. (B) Overall, model
predictions and experimental measurements agreed fairly well for all amino acids (Spearman p = 0.54).



