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Abstract

Soil salinity has today become a highly disastrous phenomenon that is responsible for crop failure worldwide and specially in
countries with low farmer incomes and food insecurity. Soil salinity is often caused due to water accumulation in fields due to
unscientific flood irrigation wherein plants intake the water leaving salts behind. It is, however, the sub-surface soil salinity
that affects the plant growth. These salts in sub-surface soil get trapped in root nodules of plants and prevent further water
intake. There have been very few studies conducted for sub-surface soil salinity estimation. Hence this study aims to estimate
sub-surface soil salinity (at 60 cm depth) for early stage of wheat crop growth in a simplified manner using freely available
satellite data, which is a novel feature and prime objective in this study. The study utilizes Sentinel-1 SAR (Synthetic Aperture
RADAR) data for backscatter coefficient generation, Sentinel-2 multispectral data for NDSI (Normalised Differential Salinity
Index) generation and on ground equipment for direct collection of soil electrical conductivity. The data were collected for two
dates in November and December 2019 and one date for January 2020 during the early stage of wheat crop growth. The dates
were selected keeping in mind the satellite pass over the study area of Rupnagar on the same day. Ordinary Least Squares
regression was used for modelling which gave R2-statistics of 0.99 and 0.958 in training and testing phase and root mean square

error of 1.92 in modelling for soil salinity estimation.

1. Introduction

Soil salinity is defined as the accumulation of salts in the soil (Rengasamy, 2010). Soil salinity is a major
environmental catastrophe caused by both natural and anthropogenic reasons (Rapp, 1986). Nearly 20%
of all land globally is salinity affected and has raised huge concerns for governments bodies worldwide to
introduce timely land reclamation measures (Ringler, Bhaduri, & Lawford, 2013). Land reclamation for
salinity affected areas requires timely monitoring of salinity status of soil and its indicators in an efficient
manner to curb the causative factors (Vogt et al., 2011). Though not as damaging initially as other hazards
like earthquake, volcanic eruption or floods, soil salinity can take a heavy toll on lives in the long run
(Dumanski Samuel Pieri, Christian Agriculture and Agri-Food Canada, 1998).

Today food security is a highly debated topic and with increasing salinity in soil for areas which depend upon
artificial irrigation sources, soil salinity is causing stunted plant growth and crop failure at times (Garcia-
Tejero, Durdn-Zuazo, Muriel-Fernandez, & Rodriguez-Pleguezuelo, 2011; Koevoets, Venema, Elzenga, &
Testerink, 2016).

Increase in soil salinity causes decrease in moisture intake capacity of plants since their root nodules get
blocked by salts (Egamberdieva, Li, Lindstrom, & Réiséinen, 2016; Etehadnia, Waterer, De Jong, & Tanino,
2008; Franzini, Azcén, Ruiz-Lozano, & Aroca, 2019). Moreover, high concentration of salts in water causes
reverse osmosis resulting in the wilting of plants causing their perishing(Arora et al., 2018). This in turns



affects the crop yield and causes heavy loss to farmers. Salinity in soil happened mainly due to natural
causes such as frequent flooding but over the years, unscientific and improper irrigation management(Baig
& Shahid, 2014). Figures indicate that the soil salinity has become a highly serious phenomenon. Primary
salinity affected areas globally account for 955 M ha and secondary salinity affected areas are some 77 M ha
and out of these 58% is irrigated area that shows the major cause of salinity is anthropogenic(Amin, 2004).

Increasing human population and the competition for resources has posed a heavy threat on all-natural
resources including water and soil (Cassman, Dobermann, Walters, & Yang, 2003). Since soil supports
almost all life on earth, proper management of soil in a scientific way becomes very important (Miltner,
Bombach, Schmidt-Briicken, & Késtner, 2012). Salinity can occur out of a number of other factors apart
from improper irrigation- engineering problems, soil erosion and soil dispersion(Qadir, Ghafoor, & Murtaza,
2000). For areas with a history of water logging, the soil salinity becomes more acute(Bhutta & Smedema,
2007; Shah, Molden, Sakthivadivel, & Seckler, 2001). The plants intake the moisture leaving behind the
dissolved salts in water(Konukcu, Gowing, & Rose, 2006). After a period of time, this salt accumulates
around the root nodules making further water intake impossible(Streeter & Wong, 1988). Salinity in soil can
be determined by estimating the electrical conductivity of soil(Rhoades, Shouse, Alves, Manteghi, & Lesch,
1990; Rhoades & van Schilfgaarde, 1976). The electrical conductivity measured in milli-siemens per meter is
a measure of the ionic concentration of the soil (Susha et al., 2018).

In agriculture science, soil is considered to be saline in conditions when there is sufficient amount of salts
dissolved in root zone soil moisture to adversely affect the plant growth (Rengasamy, Chittleborough, &
Helyar, 2003). Some studies claim soils to be saline in cases when soil electrical conductivity is more than
4dSm™! at 25°C (Igartua, Gracia, & Lasa, 1994). Different plants have different tolerance for soil salinity
levels beyond which their growth is adversely affected, as shown in Table 1(Xie et al., 2009)-

Table 1 . GENERAL SOIL SALINITY TOLERANCE RATE FOR PLANTS

SALINITY IN TERMS OF ELECTRICAL CONDUCTIVITY (EC=dSm™') PLANT RESPONSE

0-2 Mostly negligible

2-4 Growth of Sensitive plants is affe
4-8 Growth of many plants is affectec
8-16 Only tolerant plants grow effectiv
Above 16 Only few very tolerant plants gro

The above table shows that in coastal regions specially where there is regular accumulation of sea water in
high tides, only few exotic plant species with high salinity tolerance levels can thrive well.

Increased soil salinity not only causes less water intake in plants but also leads to acute nutrient imbalances
(Hu & Schmidhalter, 2005). This often causes toxins detrimental for plant growth to accumulate and
reduction in water infiltration in the event of high sodium ion (Na™) concentration(Qadir & Schubert, 2002).
Statistics reveal that globally about 1 billion hectares, close to 7% of earth’s continental crust is salinity
affected (Lewis & Maslin, 2015). Soil salinity can occur in any soil type anywhere on earth. However,
semi-arid and arid regions are the worst affected (Jorddn, et al., 2004). Soil salinity depends upon (Jolly,
McEwan, & Holland, 2008)-

Salt could be found along with parent material like rock or salt layers accumulated over time.

Leaching and weathering of parent rock materials causes the free ion accumulation in soil thereby increasing
soil salinity.

During erosion by wind or water, soil salinity can occur by materials brought by erosive forces from one area
to another.

In case when the underground water becomes saline due to prolonged leaching, the places where the water



table is near the surface soil becomes saline after long spells of dryness and evaporation from surface.

Most common cause of soil salinity is however the unscientific flood irrigation. The irrigation water from
tube-wells or canals if containing dissolved salts often leads to soil salinity or increase in the salinity levels
of soil. Remote sensing is a non-evasive and time saving tool which can be applied effectively for monitoring
of soil salinity levels and mapping of salinity affected areas (Katsaros, Vachon, Liu, & Black, 2002). Since
many decades and ever since the inception of remote sensing as an advanced surveying tool with launch
of first remote sensing satellite- Landsat-1 in early 1970s; spaceborne remote sensing found extensive use
in agriculture (Zhang et al., 2002). However, there was still paucity of dedicated use of spaceborne remote
sensing for soil health studies (Pampaloni & Calvet, 2007; Wagner, Lemoine, & Rott, 1996). Initial soil
health studies were done in conjunction with remote sensing research for precision agriculture using optical
multispectral satellite datasets (Viterbo & Betts, 1999; Y. Xie, Sha, & Yu, 2008). Since the optical, thermal,
and hyperspectral datasets have their own constraints owing to their non availability every time and in all
seasons due to dense cloud covers specially in monsoon months, a need for all weather data was felt (Kim &
Hong, 2007). It was due to this that microwave or Synthetic Aperture RADAR (SAR) remote sensing came
into use (Hong & Pan, 2000). It has a penetration ability and being an active sensor, it has high temporal
resolution with 24-hour data availability (Holmes, 1959; Liu et al., 2011). Apart from this, owing to its several
modelling and decomposition approaches, it becomes the most versatile branch of remote sensing research
(Engman, 1991; Larson et al., 2010). But spaceborne remote sensing has its own limitations (Pachepsky,
Guber, & Jacques, 2005). High resolution optical datasets are mostly available on commercial and paid basis
and almost all currently active SAR Datasets are available at very high costs (Delaney, 1974; Walker, Houser,
& Willgoose, 2004). This often causes budgetary constraints on advanced research. Hence a cost-effective
study is needed to carry out research that is feasible and at par with those conducted using commercial data.
Moreover, SAR data has lots of speckle noise which is absent in optical data (Chong & T, 2005). Keeping
all the limitations and constraints in view, this study was conducted using synergy of both optical and SAR
remotely sensed and freely available high temporal resolution satellite data for soil salinity estimation and
modelling. This study uses backscatter coefficients generated after calibrating the SAR data from Sentinel-1
checks their sensitivities for soil moisture and electrical conductivity values collected from ground along with
NDSI calculated from Sentinel-2 optical multispectral data of the same dates (David R . Anderson, 2000;
Pope & Webster, 1972). Also, surface temperature data in Fahrenheit was also used using a thermal imager
on ground during field data collection (Congalton, Fenstermaker, & Mcgwire, 1991; Richardson & Hollinger,
2005). This study is unique in the sense that it uses a multisensor remote sensing approach along with a
synergy of field data to be fed into developing a Ordinary Least Squares (OLS) model for estimation of
soil salinity (Dekker, 1998; Sowter et al., 2016).1.1 Short Literature reviewRemote sensing is defined as the
science and art of data collection, processing, interpretation, and analysis of data from a distance without
coming in actual tangible contact with the target object (Guzha, 2004; Metternicht & Zinck, 2003). In optical
remote sensing, the target is illuminated by the Sun’s rays and the reflectance is captured by the sensors
of the satellite operating in narrow band ranges of the electromagnetic spectrum and capture imagery in
several wavelength band ranges (Herrick, 2000; Stenberg, Rossel, Mouazen, & Wetterlind, 2010; K. T. (eds).
2013 Wymann von Dach S, Romeo R, Vita A, Wurzinger M, 2014). In microwave remote sensing, the sensor
being an active sensor, illuminates the target with emitted electromagnetic waves in the microwave region
(Raina, Joseph, & Haribabu, 2010; K. T. (eds). Wymann von Dach S, Romeo R, Vita A, Wurzinger M, n.d.).
The waves are received back after interaction with the target and are received on the receiver of the sensor
platform which generates an image of the target object (Braidwood, 1960; Muir, Pretty, Robinson, Thomas,
& Toulmin, 2010). Remote sensing data is collected from a variety of sensors like visible and infrared sensors,
optical and thermal imaging sensors, hyperspectral sensors and microwave sensors and based on the respective
behavioural properties of salinity effected areas with the incident radiation, mapping of soil salinity is done
(Schmugge et al., 2002). In remote sensing applied to land resource surveys, wavelengths between 0.4-1.5mm
are most used (Aslan et al., 2016). Landsat TM (Thematic Mapper) and SPOT were the satellites that found
usage widespread for natural resource mapping for landscapes spread over hectares of land (Akshar Tripathi,
2018). The image type depended upon not only the purpose but also on the sensor used and the number of
spectral bands it offered (Lobell et al., 2015), with Landsat providing much greater number of spectral bands



than SPOT. Landsat images were used for classification, both supervised and unsupervised (Dengsheng Lu,
Tian, Zhou, & Ge, 2008). Multispectral bands 3,4,5 is used along with TM bands 7 for the proper mapping
of salinity effected soils as described by (Hari Shanker Srivastava et al., 2008). Davidson & Finlayson, 2007;
Mahlke, 1996, used synergy of thermal and microwave remotely sensed data and used RADAR backscatter for
fresh and saline water and surface temperature as parameters to model for soil salinity. (Leckie, 1984) found
that Landsat bands 1-5 and 7 are sensitive for soil minerals and are good for mapping when salinity causing
minerals are dominant in soil also soil salinity affects the thermal properties of the soil. (Anderson & Croft,
2009) used Landsat MSS data to produce maps for calcareous, gypsiferous and clayey soils and also found
the TM bands helpful when used with aerial photographs for arid and semi-arid regions (Mougenot, Pouget,
& Epema, 1993). Sharma, Saxena, & Verma, 2000 used topographic survey maps and standard False colour
composite from Landsat MSS imagery to map saline and non-salinity affected areas. Saha, Kudrat, & Bhan,
1990, used digital image classification using Landsat data and successfully mapped saline, non-saline and
moderately saline areas which were waterlogged for a long period of time, with 96% accuracy in classification.
Similar classification study was done by D Lu & Weng, 2007. Calvao & Palmeirim, 2004 used band rationing
and proved that in Middle to Near Infrared bands from Landsat were useful in mapping chlorosis affected
soils. Mougenot et al., 1993, used thermal infrared band and found that the hygroscopic properties of soil
can be analysed and the reflectance from leaves of plants depends upon the chemical composition of the
dissolved salts in the up taken water and morphology of plant. Hansen, Dubayah, & Defries, 1996, found
classification tree was useful when Normalised Differential Vegetation Index (NDVI) is used along with
brightness index for mapping of soil salinity affected areas in Morocco and Pakistan Respectively. Ahmed &
Luis, 2010, used multiple regression analysis using electrical conductivity values from field and based on that
generated a soil salinity map for entire Mexico. Mayaux et al., 2004 used NDVI and Surface Energy Balance
Algorithm for Land (SABAL) to map and classify the soils based on the various salinity levels. It is clear
from the studies above that most of the soil salinity studies conducted were of qualitative classification and
mapping based. There are only few dedicated studies for soil salinity estimation and modelling using multiple
remote sensing sensors in a quantitative way. Most of the studies conducted for soil salinity estimation using
remotely sensed data have been done at surface level since remote sensing is a surface phenomenon. But after
going through literature, it was found that it is the sub-surface soil salinity that affects the plant growth
as the salts underneath get trapped in root nodules and prevent further moisture intake by plants. This
study is one of the few studies which estimate soil salinity in terms of electrical conductivity using remotely
sensed SAR and optical data in synergy with field data. Apart from this, it was also aimed to provide a
simple and robust soil salinity estimation approach, in this study. Early stage of wheat crop growth was
chosen owing to the presence of more exposed area of soil to the satellite sensor during it pass. Moreover,
C-band satellite data from Sentinel-1 cannot penetrate the vegetation cover once the crop matures. Hence
study of soil becomes difficult. 1.2 FElectrical Conductivity as Soil Salinity IndicatorThe amount of electrical
current that a material allows to pass through it, or the current carrying capacity of a material is defined as
its electrical conductivity(Frackowiak, 2001). Electrical conductivity is also known as specific conductance
and is measured in mS.m™ (milli Siemens per meter)(Riffat & Ma, 2003). Electrical conductivity of soil
correlates with soil properties like soil texture, cation exchange capacity, salinity, as a measurement of
current conducting capacity of soil (Landauer, 1978). Since soil salinity refers to the concentration of ions in
the soil pore water that make the further water up take difficult, the laboratory determination of soil salinity
is a cumbersome process which is time taking(Corwin & Lesch, 2003). Electrical conductivity measurement
as an indicator of soil salinity is an effective and time saving method for soil salinity estimation(Rhoades,
1993). The cause of the electrical conductivity is the ions present in the soil which become more loosely bound
to the soil pores in presence of moisture owing to the high dielectric constant of water (Corwin & Lesch,
2005). The ions get aligned once the electric current is applied to soil, which are otherwise in random state in
the soil(Rhoades & Miyamoto, 1990).1.3 SAR Backscatter coefficientsBackscatter is defined as the RADAR
signal that returns to the receiver of the antenna after interaction with target under observation(Allbed
& Kumar, 2013). The coefficient of scatter of RADAR signal in RADAR direction is called backscatter
coefficient, represented by sigma nought o”(Verhoest et al., 2008). It is the RADAR backscatter per unit
area of the distributed target with which the incident signal interacts. It is measured in degree decibels -dB



( Tripathi, Maithani & Kumar, 2018; Shashi, 2019; Tripathi & Maithani, 2018). Beta nought (°) is the
brightness coefficient of the RADAR. It is a dimensionless quantity. Gamma nought (y") is the RADAR
backscatter coefficient dependent upon RADAR Brightness and incidence angle and is suitable for volume
Scatterers(Saha, 2011; Tripathi and Tiwari, 2019).1.4 Problem StatementThe prime objective of the study
is to estimate the soil salinity in early stage of wheat crop growth at sub-surface level in a simple and robust
way with freely available satellite datasets while maintaining the accuracy good enough.2. Study Area
and Datasets2.1 Study AreaRupnagar district of Punjab state in India is the study area for this study.
Punjab has been the cradle of India’s first green revolution and has been a primarily agriculture dependent
state(Kumar, Kumar, & Mittal, 2004). Though in terms of annual rainfall, it lies in the semi-arid zone but
owing to the nutrient rich alluvial soil brought down from the Himalayas by the five rivers and extensive canal
and tube-well network for irrigation, Punjab leads the country in wheat production. Along with Haryana, it
is the wheat bowl of the country. Rupnagar lies to the north of India’s first planned city after independence-
Chandigarh. Rupnagar is a district and headquarters of Rupnagar division of Punjab(Levinson et al., 2004).
Rupnagar located on the banks of river Sutluj is one of the prominent sites of the erstwhile Indus Valley
Civilization. Located between 30.97° N and 76.53° E, Rupnagar’s average elevation is 260m above mean
sea level and is bordered by the Shivalik hills of the mighty Himalayas in North and North-East(Kumar et
al., 2004; Levinson et al., 2004).2.2 DatasetsSAR/Microwave remote sensing data from Sentinel-1 satellite
of the European Space Agency (ESA), Optical multispectral remote sensing data from Sentinel-2 satellite
of the ESA. The datasets were acquired from the Alaska Satellite Facility (ASF) which is a freely available
datasets for download from this portal. The data used were of 20'" November and 27" December 2019 and
20*" January 2020, which were the days of satellite pass over Rupnagar. It was decided to acquire the field
data of volumetric soil moisture and Electrical Conductivity (EC) simultaneously on the same dates at 60
cm depth. The following table (Table 2) gives details of Datasets used-Table 2. DATASETS USED

SL.No. Data Type Spatial Resolution Date of Acquisi
1. Sentinel-1A SAR/Microwave 20 m, Multilooked to 14 m  20/11/2019, 27,
2. Sentinel-2A /B Optical/Multi-spectral 10 m, resampled to 14 m 20/11/2019, 27,
3. Field data Electrical Conductivity, Volumetric Soil Moisture ~———————— 20/11/2019, 27,

Sentinel-1 is a microwave remote sensing satellite of the ESA that was launched in February 2014 as a part
of ESA’s Copernicus mission(Esch et al., 2019). It has an all-weather, all time data acquisition capacity.
It operates in C-band with VV and VH polarizations. It has a 12-day repeat pass and has been used
extensively for several applicable domains like crop and Land Use/Land Cover monitoring(Tripathi & Tiwari,
2019a). It has two different operation modes for land mass and over oceans to provide error and conflict
free data acquisition(Crosetto et al., 2016). Main operational mode has 250km wide swath with a 20m
spatial resolution at level-1 (L-1) product with high radiometric resolution(Shirvany, 2012). For this study
Interferometric Wide Swath (IW) mode product, Single Look Complex (SLC) was chosen since it is the
standard product over landmasses. The image was multilooked to 14m spatial resolution. There are three
swaths of Terrain Observation with Progressive Scanning SAR (TOPSAR) in IW mode having a cross pass
synchronization of burst for interferometric alignment. Sentinel-2 is an optical satellite of ESA’s Copernicus
program. Sentinel-2A (Calera et al., 2017) was launched in 2015 and 2B in 2017 with 7-year lifespan. It
operates in 13 multispectral bands in visible, NIR and SWIR bands with 10-60m spatial resolutions. This
study uses 10m resolution data from Sentinel-2B. The details of the study area are given in Figure 1 (Land
Use/Land Cover map using Sentinel-1 SAR RGB image). -
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Figure.l. A classified Sentinel-1 SAR image showing Land Use/Land Cover details of study area- Rupnagar,
Punjab

3. Methodology

Time series datasets, microwave data from Sentinel-1 and optical data from Sentinel-2 were taken. The
microwave data was splitted. Calibrate and Deburst as a part of pre-processing. Thereafter the backscatter
parameters 6°, B and vy were retrieved during calibration. Thereafter, the data was geocoded using terrain
correction from SRTM (Shuttle RADAR Topography Mission) plugin. Thereafter, the data was multilooked
to generate square pixels and remove radiometric distortions.

The optical data of Sentinel-2, of the same dates as microwave data was taken and layer stacked to put
together all 13 bands as a single imagery. Since the study area was not covered in one image tile, the
different image tiles were mosaiced together. Thereafter, the study area of Rupnagar was clipped out from
its district shape file. From the clipped imageries, band rationing was done to derive Normalised Differential
Salinity Index (NDSI) which is an indicator of soil salinity from optical satellite data.

Since optical data does not have an all-weather availability and microwave data suffers from speckle noise,
this study was aimed at retrieval of salinity sensitive parameters from both the datasets and put them
together into one salinity estimation model. The model also uses field data collected using an instrument
from FieldScout Ltd, USA. Surface Soil moisture, soil temperature and Electrical conductivity were recorded
from this instrument at surface as well as at 60 cm below the surface in early stages of wheat crop growth
(November 20", 2019, December 27", 2019, and January 20" 2020).

The SAR Backscatter coeflicients, NDSI, surface soil moisture, soil electrical conductivity (EC) and soil
temperature were fed into an Ordinary Least Squares Model. R? statistics, F-test and Durbin-Watson test
were carried out to assess the model accuracy. The detailed methodology flow diagram is mentioned in
Figure 2.

Prior to model development, correlative plots were made to check the sensitivities of all other parameters
used in the model with the most indicative of Soil Salinity — EC and NDSI. Also, the three backscatter
parameters were plotted for correlation with Sigma Nought ¢® for any major variation since use of excess
parameters could lead to model overfitting.
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Figure.2. Methodology Flow Diagram
3.1 Band Rationing for NDSI

From the clipped image of Rupnagar, the salinity sensitive bands were used for generation of NDSI. The
NDSI values range from -1 tol with 1 representing high salinity values in soil(Konukcu et al., 2006). Studies
reveal that the Red and NIR bands are the most sensitive to the soil ions causing salinity(Rengasamy et al.,
2003). The following formula was used for the purpose-

_ (Green—SWIR)
NDSI= (Green+SWIR) (1)

Since the bands 3 (GREEN) and Band 11 (Short Wave InfraRed-SWIR) have spatial resolutions of 10 m
and 20 m respectively, the optical image bands were resampled at 14 m spatial resolution (same as that
of multilooked Sentinel-1 SAR image). Based on this, surface Salinity maps for entire Rupnagar district
were generated for the study dates of 4" December and 27" December 2019 and 20** January 2020. The
application of fertilizers mainly DDT (Dichlorodiphenyltrichloroethane) affected the salinity levels, declining
between the first two dates of early stage of wheat crop growth to slightly rising in January. The details are
shown in the maps in Figure 3-
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Figure 3. NDSI Maps generated from Sentinel-2 Optical Multi-spectral data for — (A) 20T November 2019,
(B) 27" December 2019 and, (C) 20TH January 2020

The maximum values of NDSI for first two dates were 0.78 and 0.87 respectively while after the application
of fertilisers in January first week (as told by the local farmers), there was an increase in salinity levels and
maximum value increased to 0.973.

3.2 Correlations of Parameters with EC at 60 cm depth

The various backscatter parameters were analysed for correlation with Electrical Conductivity (EC) and
NDSI for both VH and VV polarisation channels. For %, B% and y°, high values of R? statistics for
correlation were given as shown in Figures 4. Figure 4 shows the correlative plots for ¢’in VH and VV
polarisation with Surface EC for all three dates, since C-band SAR waves are affected by the surface soil
conditions and interacts with the surface soil ions as shown by Figure 4-
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Figure.4. Correlative plots for Surface Electrical Conductivity and VH backscatter (A to C) and VV polar-
ization backscatter (D to F)

since SAR waves interact with the surface, but it’s the root zone soil salinity that affects the plant growth
hence its important to establish a correlation between surface soil salinity that interacts with the RADAR
waves and the root zone soil salinity. This is done to establish an indirect relation between RADAR backscat-
ter and root zone electrical conductivity (which is indicative of soil salinity). So that, satellite data could be
used for modelling and estimation of soil salinity in root zone.

Figure 5, shows the correlative relation between surface EC and root zone EC.
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Figure 5. Correlation between surface EC and sub-surface (60 cm depth) soil EC for 4" December 2019,



27" December 2019, and 20" January 2020.

The surface parameters from field were found to directly correlate to the satellite data parameters of SAR
backscatter and NDSI, hence an attempt was made to correlate the satellite data parameters with sub-surface
field parameters which showed high correlation as shown in Figures 4 and 5 above. Hence, sub-surface soil
moisture and EC values were used for regression analysis along with satellite data. 60 cm depth was chosen
since in early stage of wheat crop growth, this is the root zone depth of wheat crop.

3.8 Calibration

Calibration is done to relate the pixel values directly with the backscatter thus quantifying the SAR
image(Ballester-berman, Lopez-sanchez, & Fortuny-guasch, 2005; Hari Shanker Srivastava et al., 2008).
Calibration vector on addition as an annotation product facilitates the conversion of backscatter values of
intensity into the different backscatter coefficient values of 6°, radar brightness coefficient $° and volumetric
scatter coefficient y?(Boerner, 2012; Hsieh et al., 2011):

Where,
B%= kxDN? (2)

where % is RADAR brightness coefficient, k is calibration coefficient that relates the Backscatter to pixel
values using simple mathematical formula and in turn provides radiometric correction to the imagery( Sri-
vastava et al., 2009).

o= B0 x sin (ixy) (3)

Where ¢ is RADAR backscatter coefficient expressed in degree decibels (-dB). And iy, is local incidence
angle at which the RADAR waves interact with the target(Tiwari, 2019; Veci, 2016).

0= pOx tan (ixy) (4)
where, v0 is the backscatter coefficient for volumetric Scatterers.

Calibration replaces the sensor level scaling of the imagery with user defined scaling. The Sentinel-1, L-1
products provide four Look Up Tables (LUTSs) corresponding to the four backscatter coefficients and their
Digital Number (DN) values(Zhou, Pan, Zhang, Wei, & Han, 2017).

The LUTSs apply a gain depending upon the absolute calibration constant. The following formula applies
radiometric calibration(Tapete, Cigna, & Donoghue, 2016)-

Values (i) :‘Ii}jf (5)

Where Values (i) = anyone of the backscatter coefficients or their DN values and A; = one of 3, o;
3.4 Deburst

The Terrain Observation with Progressive Scanning SAR (TOPSAR) in IW mode product acquires single
image per swath per polarization mode(Keydel, 2007). Each IW product has three swath and acquisition is
done in sub-swaths with successive burst series(Tripathi, Kumar, & Maithani, 2018). This step is used to
compensate for the pixel spacings in both range and azimuth direction for better acquisition and sub-swath
synchronisation(Hoa et al., 2019).

3.5 Multilooking

Due to different spatial resolutions in range and azimuth directions, speckle noise adds up and leads to a
lot of speckle in the imagery(Fawwaz T. Ulaby, F. Kouyate & Williams, 1986). To overcome this noise and
generate square pixels, multilooking is carried out. In this study 14.15m was the resultant spatial resolution
of the multilooked image(Yang et al., 2011).

3.6 Terrain Correction
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Since, the topography varies with the sensor tilt, there is an inherent distortion in the imagery(Baghdadi et
al., 2012). The far-off features from the nadir appear more distorted. To overcome this distortion and relate
the image co-ordinates to the actual ground co-ordinates, terrain correction is done.

3.7 Model Development

Ordinary Least Squares (OLS) regression was used for modelling and estimation of soil salinity. The pa-
rameters chosen were soil moisture, soil temperature and root zone electrical conductivity from field and
RADAR backscatter for VH and VV polarisations, NDSI from optical Sentinel -2 data.

The OLS model is robust for estimation of parameters that are unknown in a linear regression model. The
OLS is a type of multiple linear regression model and is expressed as(Ferreyra, Curci, & Lanfri, 2016)-

Yo =1 Bixui + en (6)
And Y; = B0+S1Xi+€i(7)

Where, Y; is the dependent variable whereas, (3 is intercept of y and {3; is coeflicient of slope and ¢; is term
denoting random error(Reynolds et al., 2018).

It was aimed to ascertain the dependency of various parameters since an OLS model performs better with
more than one predictor, on the soil salinity in root zone that affects the crop growth. The model did
not use RADAR brightness term and volume Scatterers since they had high dependence on each other and
Had nearly equal values. Using them would lead to overfitting the model giving exceptionally high values
of R2-statistics in training phase. Thirty -two different locations in various agricultural zones of Rupnagar
district were chosen to collect field data for the three dates as mentioned earlier. The RADAR backscatter
values for the same locations were used in the model. The model is as follows-

Soil_Salinity = 30 + p1 X ocVH + 52 X oVV  + 83 X
Soil  Moisture + 54 X NDSI + B85 X ECROQOT ZONE + £6 %
Temperature in F (8)

Where, 80, B1.... B5 are all regression coefficients, NDSI is Normalized Differential Soil Salinity Index, EC
is electrical conductivity in milli siemens per centimetre and oyy and oyy are backscatter coefficients for
VH and VV polarization channels.

Field data collection for soil electrical conductivity and soil moisture was collected from an instrument of
field Scout USA which was well calibrated in distilled water (EC=0 mS/cm) and thermal data was collected
from thermal imaging camera sensor from Seek Thermal. The field photographs are shown in Figure 6-
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Figure 6. Data Collection from Agriculture Field
4. Results and Discussion

The Ordinary Least Squares (OLS) regression was used for modelling and prediction of soil salinity in the
root zone. Data from first two dates (4*" and 27*" December 2019) with all parameters was used to train
the model while validation was done using the data of 20" January 2020. A correlation heat map shown
in Figure 7, shows the correlation between the different parameters used for modelling. It also shows the

strong correlation between different satellite and on ground sensor parameters with soil salinity indicators
of EC and NDSI-

Hosted file

image7.emf available at https://authorea.com/users/354002/articles/477698-a-simplified-
sub-surface-soil-salinity-estimation-using-synergy-of-sentinel-1-sar-and-sentinel-2-
multispectral-satellite-data-for-early-stages-of-wheat-crop-growth-in-rupnagar-punjab-
india

Figure 7. Correlation Heat Map

The OLS model gave high R2-statistics in testing and training phases, respectively. The R2-statistics in
training was 0.997 and in testing 0.958 which means 99.7% and 95.8% accuracies at respective stages. The
results are shown in Figure 8-
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Figure. 8. (A) R2-statistics in testing and training phases, (B) Goodness of Fit
4.1 Accuracy Assessment
4.1.1 The F-test

An F-test was conducted to cross check the model accuracy and goodness of fit, since the R?-statistic only
gives the variation of dependent variable with the independent variable(Forest et al., 2001). The adjusted
R? tests the results based on independent variables only. The F-test statistic is indicative of response
and predictor relation. A low F value means a weak relation and a zero F value would mean there is no
relationship at all(Loureiro & Gonzalez, 2008).

The higher the F-value more than 1 gives enough reason to reject the null hypothesis (Hg) that all regression
coefficients are zero (8o, P1, B2, Bs------ Bn =0). An F-test statistic is calculated by(Forest et al., 2001;
Loureiro & Gonzélez, 2008)-

__ (TSS—RSS)/
F= RSS/(n—p—lZ; 9)

Where TSS is total sum of squares, TSS= ¥ (?; - (y )? and RSS is the Residual Sum of Squares RSS= %
(?2 - (9))? , and y; is response value, 7 is predicted value andy is sample mean(Happé & Frith, 2006).

The OLS regression results are given in TABLE 3 at 97.5% confidence level-
TABLE 3. OLS Regression Residuals

Coefficient Strd. Error
0.1726 0.295
-0.7872 0.122
0.0222 0.392
-0.0720 0.070
-0.3572 0.911
0.6151 0.308
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Coefficient Strd. Error
0.2075 0.1819 -0.0184 0.1373 2.3494 -0.2951 0.0719 0.8728 -0.0213 0.0459 0.221 0.259 0.103 0.121 1.923 0.925 0.258 0.368 (

The F-test value was 1686 which was well above zero and gave compelling evidence to reject the null
hypothesis (Hp). The adjusted R? value was 0.98. The standard error value from the above table is below
0.5 for most cases which gives information of standard deviation of coefficients and their variations. The
P-value shows that each variable has some correlation with independent variables at 97.5% level of confidence.

4.1.2 Durbin-Watson test

The Durbin-Watson test is conducted in statistics to check for autocorrelation existing between the residuals
in a linear regression analysis(Chen, 2016). A positive autocorrelation value between 0 to 2 means that the
model fits properly (Hepple, 1998). A value less than 0 and more than 2.5 is a cause for concern as it would
mean too much of outliers in the data or model overfitting. In this study, the Durbin Watson value was
found to be 1.65 which shows that model fits well and accurately(Chen, 2016; Happé & Frith, 2006; Hepple,
1998).

4.2 Discussion

The results show that for soil which has a horizontal expanse over vast areas VH polarization is the obvious
choice for modelling, but it gets attenuated when the soil texture is rough and there is sprouting of crop.
Hence a combination of both VV and VH backscatter parameters from SAR satellite data were used for
modelling. For soil salinity indices development from Sentinel-2 data, Band 3 (Green) and Band 11 (Short
Wave InfraRed- SWIR) were used since saline soils reflect more in Green to SWIR Bands. Hence NDSI
generated was (refer to Section 3.1) used as another parameter. The other parameters came from field data
such as temperature, soil moisture and soil electrical conductivity for surface as well as root zone. Since
satellite data is indicative of only surface phenomenon hence a correlation was established between surface
parameters from field and root zone parameters. Thereafter, a correlation was established between satellite
and root zone parameters collected from field by digging up to 2 ft (0.6 m) depth since crop roots do not
extent any further beyond. The Root zone parameters were then used for modelling since all the above-
mentioned correlative plots gave an average R2-statistics in correlation above 0.8 (80%). The model gave
highly accurate results in the limited resources available with two polarization channels of SAR data and no
complex modelling approach and sophisticated chemical lab tests.

The estimated sub-surface soil salinity map in terms of Electrical Conductivity for Rupnagar is shown in
Figure 9-
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Figure 9. Estimated Sub-Surface Electrical Conductivity (EC) Map for January 2020 of Rupnagar
5. Conclusion(s)

The results (Refer to section 4) show that dual polarized SAR data along with optical multispectral data
if used in a synergetic way by taking the advantages of both in terms of parameters that can be derived
from them can be used in a simple modelling approach for Root Zone soil salinity estimation. Till now,
most soil salinity studies were concentrated only upon the surface soil salinity despite using highly advanced
datasets which were costly and sophisticated laboratory tests of soil samples. This study not only conducted
in a highly cost-effective manner but also aimed at a simple, robust, and accurate approach. The results
show that the study has been highly accurate with high values of R2-statistics of 0.997 and 0.958 in training
and testing stages, respectively. The accuracy and goodness of model fit was further strengthened by the
F-test and DW tests as mentioned in results section. The novelties from this study are that this study is
innovative in a manner that it uses Microwave and Optical data from satellites, thermal data from thermal
imaging sensor from field thus giving it a multi sensor approach for soil salinity estimation at sub-surface
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level with high accuracy with a simple approach. The study made use of freely available Sentinel-1 SAR and
Sentinel-2 optical satellite data, and no sophisticated laboratory analysis hence making it cost-effective and
time saving. The study estimates root zone soil salinity from satellite data unlike most other studies which
were confined to surface soil salinity estimation using remote sensing.

The study establishes a fact that remote sensing could be used effectively and accurately for root zone soil
salinity estimation which is a major cause of crop failure and low yields world-wide. The findings could be
used for planning and taking timely measures for soil health enhancement.

As an improvement and future extension to the work, a longer time series SAR dataset could be utilised
at higher wavelengths (L and S band) at monthly intervals and soil salinity variations can be studied with
crop growth monitoring simultaneously. At present, the study has been conducted for Rupnagar district
of Punjab. Further the technique is being implemented for other areas in India and is expected to deliver
similar results.

Acknowledgements

The authors express their gratitude to the Department of Civil Engineering, Indian Institute of Technology
(IIT) Ropar, Rupnagar (Punjab), India for technical support and Dr. Dara Entekhabi, Professor- Bacardi
and Stockholm Water Foundations Professor in the Department of Civil and Environmental Engineering
and the Department of Earth, Atmospheric and Planetary Sciences at Massachusetts Institute of Technology
(USA) and Science Team Leader of NASA SMAP (Soil Moisture Active Passive) mission, for his valuable
appreciation towards developing the final form of this study.

Conflict of Interest
The authors declare no conflict of Interest.
Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable
request.

References

Ahmed, E., & Luis, G. (2010). Comparison of Ordinary Kriging, Regression Kriging, and Cokriging Tech-
niques to Estimate Soil Salinity Using LANDSAT Images. Journal of Irrigation and Drainage Engineering
, 136 (6), 355-364. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000208

Akshar Tripathi, Sandeep Maithani, S. K. (2018). Minimization of the Ambiguity of Merging of Urban
Builtup and Fallow land Features by Generating ¢ C2 ’ Covariance Matrix using Spaceborne Bistatic Dual
Pol SAR Data. IEEE XPLORE , (March). https://doi.org/10.1109/RAIT.2018.8389058

Allbed, A., & Kumar, L. (2013). Soil Salinity Mapping and Monitoring in Arid and Semi-Arid Re-
gions Using Remote Sensing Technology: A Review.Advances in Remote Sensing , 02 (04), 373-385.
https://doi.org,/10.4236/ars.2013.24040

Amin, A. A. (2004). The extent of desertification on Saudi Arabia.Environmental Geology , 46 (1), 22-31.
https://doi.org/10.1007/s00254-004-1009-0

Anderson, K., & Croft, H. (2009). Remote sensing of soil surface properties. Progress in Physical Geography
33(4) (2009) Pp. 457473 , 33 (4), 457-473. https://doi.org/10.1177/0309133309346644

Arora, N. K., Fatima, T., Mishra, 1., Verma, M., Mishra, J., & Mishra, V. (2018). Environmen-
tal sustainability: challenges and viable solutions.  Environmental Sustainability , 1 (4), 309-340.
https://doi.org/10.1007/s42398-018-00038-w

Aslan, A., Rahman, A. F., Warren, M. W.; & Robeson, S. M. (2016). Remote Sensing of Environ-
ment Mapping spatial distribution and biomass of coastal wetland vegetation in Indonesian Papua by

16



combining active and passive remotely sensed data. Remote Sensing of Environment ,183 , 65-81.
https://doi.org/10.1016/j.rse.2016.04.026

Baghdadi, N., Cresson, R., Pottier, E., Aubert, M., Mehrez, Z., & Jacome, A. (2012). A potential use for the
C-band polarimetric SAR parameters to characterise the soil surface over bare agriculture fields, (January
2011). https://doi.org/10.1109/TGRS.2012.2185934

Baig, M. B., & Shahid, S. A. (2014). Managing Degraded Lands for Realizing Sustainable Agriculture
Through Environmental Friendly Technologies BT - Science, Policy and Politics of Modern Agricultural
System: Global Context to Local Dynamics of Sustainable Agriculture. In M. Behnassi, S. A. Shahid, & N.
Mintz-Habib (Eds.) (pp. 141-164). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-
7957-0-10

Ballester-berman, J. D., Lopez-sanchez, J. M., & Fortuny-guasch, J. (2005). Retrieval of Biophysical Pa-
rameters of Agricultural Crops Using Polarimetric SAR Interferometry, 43 (4), 683-694.

Bhutta, M. N., & Smedema, L. K. (2007). One hundred years of waterlogging and salinity con-
trol in the Indus valley, Pakistan: a historical review. Irrigation and Drainage , 56 (S1), S81-S90.
https://doi.org,/10.1002/ird.333

Boerner, W. M. (2012). Implementation of FULL-POL-SAR in agriculture, forestry and aquaculture as well
as for the detection of natural hazards plus natural disaster assessment from air and space in South, East
and Pacific Asia. FUSAR 2012; 9th European Conference on Synthetic Aperture Radar .

Braidwood, R. J. (1960). The Agricultural Revolution Author ( s ): Robert J . Braidwood Source : Scientific
American , Vol . 203 , No . 3 ( September 1960 ), pp . 130-152 Published by : Scientific American , a
division of Nature America , Inc . Stable URL : https://www.jstor.org/,203 (3), 130-152. Retrieved from
https://www.jstor.org/stable/pdf/24940620.pdf

Calera, A., Campos, ., Osann, A., Urso, G. D., & Menenti, M. (2017). Remote Sensing for Crop
Water Management : From ET Modelling to Services for the End Users. Sensors, MDPI , 1-25.
https://doi.org/10.3390/s17051104

Calvéao, T., & Palmeirim, J. M. (2004). Mapping Mediterranean scrub with satellite imagery: biomass
estimation and spectral behaviour.International Journal of Remote Sensing , 25 (16), 3113-3126. htt-
ps://doi.org/10.1080/01431160310001654978

Cassman, K. G., Dobermann, A., Walters, D. T., & Yang, H. (2003). Meeting Cereal Demand While Protec-
ting Natural Resources and Improving Environmental Quality. Annual Review of Environment and Resources
, 28 (1), 315-358. https://doi.org/10.1146 /annurev.energy.28.040202.122858

Chen, Y. (2016). Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression.
PloS One , 11 (1), e0146865—€0146865. https://doi.org/10.1371/journal.pone.0146865

Chong, 1., & T, C. J. (2005). Performance of some variable selection methods when multi-
collinearity is present. Chemometrics and Intelligent Laboratory Systems , 78 , 103-112. htt-
ps://doi.org/10.1016/j.chemolab.2004.12.011

Congalton, R. G., Fenstermaker, L., & Mcgwire, K. C. (1991). Remote sensing and geographic information
system data integration : error sources and research issues. American Society for Photogrammetry
and Remote Sensing , (January). Retrieved from https://www.researchgate.net/profile/Lynn_Fenster-
maker /publication/238307070_Remote_sensing_and_geographic_information_system_data_integration_error_-
sources_and _research_issues/links/0f31753b466{f6¢c507000000.pdf

Corwin, D. L., & Lesch, S. M. (2003). Application of Soil Electrical Conductivity to Precision Agriculture.
Agronomy Journal ,95 (3), 455-471. https://doi.org/10.2134/agronj2003.4550

17



Corwin, D. L., & Lesch, S. M. (2005). Apparent soil electrical conductivity measurements in agriculture.
Computers and Electronics in Agriculture , 46 , 11-43. https://doi.org/10.1016/j.compag.2004.10.005

Crosetto, M., Monserrat, O., Cuevas-Gonzalez, M., Devanthery, N., & Crippa, B. (2016). Persistent Scat-
terer Interferometry: A review.ISPRS Journal of Photogrammetry and Remote Sensing , 115 , 78-89.
https://doi.org/10.1016/j.isprsjprs.2015.10.011

David R . Anderson, K. P. . B. and W. L. . T. (2000). Null Hypothesis Testing : Problems , Prevalence ,
and an Alternative. Wiley ,64 (4), 912-923. https://doi.org/10.2307/3803199

Davidson, N. C., & Finlayson, C. M. (2007). Earth Observation for wetland inventory , assessment and
monitoring. AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS , 228 , 219-
228. https://doi.org/10.1002/aqc

Dekker, R. J. (1998). Speckle filtering in satellite SAR change detection imagery. International Journal of
Remote Sensing ,19 (6), 1133-1146. https://doi.org/10.1080/014311698215649

Delaney, H. and. (1974). Dielectric Properties of Soils at UHF and Microwave Frequencies. JOURNAL OF
GEOPHYSICAL RESEARCH ,79 (11). https://doi.org/https://doi.org/10.1029/JB079i011p01699

Dumanski Samuel Pieri, Christian Agriculture and Agri-Food Canada, J. G. (1998). Indicators of land
quality and sustainable land management . The World Bank. https://doi.org/doi:10.1596/0-8213-4208-8

Egamberdieva, D., Li, L., Lindstrom, K., & Rasanen, L. A. (2016). A synergistic interaction between salt-
tolerant Pseudomonas and Mesorhizobium strains improves growth and symbiotic performance of liquorice
(Glycyrrhiza uralensis Fish.) under salt stress. Applied Microbiology and Biotechnology , 100 (6), 2829-2841.
https://doi.org/10.1007/s00253-015-7147-3

Engman, E. T. (1991). Applications of Microwave Remote Sensing of Soil Moisture for
Water Resources and Agriculture. Remote Sensing of FEnvironment , 226 , 213-226.
https://doi.org/https://doi.org/10.1016/0034-4257(91)90013-V

Esch, S., Reichenau, T. G., Schneider, K., Esch, S., Korres, W., Reichenau, Schneider, K. (2019). Soil
moisture index from ERS-SAR and its application to the analysis of spatial patterns in agricultural areas
the analysis of spatial patterns in agricultural areas,12 (2). https://doi.org/10.1117/1.JRS.12.022206

Etehadnia, M., Waterer, D., De Jong, H., & Tanino, K. K. (2008). Scion and Rootstock Effects on ABA-
mediated Plant Growth Regulation and Salt Tolerance of Acclimated and Unacclimated Potato Genotypes.
Journal of Plant Growth Regulation , 27 (2), 125-140. https://doi.org,/10.1007/s00344-008-9039-6

Fawwaz T. Ulaby, F. Kouyate, B. B., & Williams, A. T. H. L. (1986). Textural Information in SAR Images.
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. GE-24, NO. 2, MARCH
1986, (2), 235-245. https://doi.org/10.1109/TGRS.1986.289643

Ferreyra, M. F. G., Curci, G., & Lanfri, M. (2016). First Implementation of the WRF-CHIMERE-EDGAR
Modeling System Over Argentina.IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing . https://doi.org/10.1109/JSTARS.2016.2588502

Forest, C. E., Allen, M. R., Sokolov, A. P., & Stone, P. H. (2001). Constraining climate model
properties using optimal fingerprint detection methods. Climate Dynamics , 18 (3), 277-295.
https://doi.org/10.1007/s003820100175

Frackowiak, E. (2001). Carbon materials for the electrochemical storage of energy in capacitors. Carbon ,
39 , 937-950. https://doi.org/https://doi.org/10.1016,/S0008-6223(00)00183-4

Franzini, V. I., Azcon, R., Ruiz-Lozano, J. M., & Aroca, R. (2019). Rhizobial symbiosis modifies root
hydraulic properties in bean plants under non-stressed and salinity-stressed conditions. Planta ,249 (4),
1207-1215. https://doi.org/10.1007/s00425-018-03076-0

18



Garcia-Tejero, I. F., Duran-Zuazo, V. H., Muriel-Fernandez, J. L., & Rodriguez-Pleguezuelo, C. R. (2011).
Water and Sustainable Agriculture BT - Water and Sustainable Agriculture. In I. F. Garcia-Tejero, V.
H. Duran-Zuazo, J. L. Muriel-Fernandez, & C. R. Rodriguez-Pleguezuelo (Eds.) (pp. 1-94). Dordrecht:
Springer Netherlands. https://doi.org/10.1007/978-94-007-2091-6_1

Guzha, A. C. (2004). Effects of tillage on soil microrelief , surface depression storage and soil water storage.
Soil Tillage and Research , 76 , 105-114. https://doi.org/10.1016/j.still.2003.09.002

HANSEN, M., DUBAYAH, R., & DEFRIES, R. (1996). Classification trees: an alternative to
traditional land cover classifiers.  International Journal of Remote Sensing , 17 (5), 1075-1081.
https://doi.org/10.1080/01431169608949069

Happe, F., & Frith, U. (2006). The Weak Coherence Account: Detail-focused Cognitive Style
in Autism Spectrum Disorders.Journal of Autism and Developmental Disorders , 36 (1), 5-25.
https://doi.org,/10.1007/s10803-005-0039-0

Hepple, L. W. (1998). Exact Testing for Spatial Autocorrelation among Regression Residuals. EFnvironment
and Planning A: Economy and Space , 30 (1), 85-108. https://doi.org/10.1068/a300085

Herrick, J. E. (2000). Soil quality : an indicator of sustainable land management ? Applied Soil Ecology ,
15, 75-83. https://doi.org/https://sci-hub.tw/10.1016,/S0929-1393(00)00073-1

Hoa, P., Nguyen Vu, G., Nguyen, B., Le, H., Pham, T. D., Hasanlou, M., & Tien Bui, D. (2019). Soil Salinity
Mapping Using SAR Sentinel-1 Data and Advanced Machine Learning Algorithms: A Case Study at Ben
Tre Province of the Mekong River Delta (Vietnam) . Remote Sensing . https://doi.org/10.3390/rs11020128

Holmes, R. M. (1959). A modulated soil moisture budget. Monthly Weather Review , (March), 101-105.
Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download7doi=10.1.1.395.2341&rep=repl&type=pdf

Hong, S., & Pan, H. (2000). Impact of soil moisture anomalies on seasonal , sum-
mertime circulation over North America in a Regional Climate Model, 105 , 625-634.
https://doi.org/https://doi.org,/10.1029/2000JD900276

Hsieh, C. S., Shih, T. Y., Hu, J. C., Tung, H., Huang, M. H., & Angelier, J. (2011). Using differential SAR
interferometry to map land subsidence: A case study in the Pingtung Plain of SW Taiwan.Natural Hazards
, 58 (3), 1311-1332. https://doi.org/10.1007/s11069-011-9734-7

Hu, Y., & Schmidhalter, U. (2005). Drought and salinity: A comparison of their effects on
mineral nutrition of plants. Journal of Plant Nutrition and Soil Science , 168 (4), 541-549.
https://doi.org,/10.1002/jpln.200420516

Igartua, E., Gracia, M. P., & Lasa, J. M. (1994). Characterization and genetic control of
germination-emergence responses of grain sorghum to salinity. Euphytica , 76 (3), 185-193.
https://doi.org/10.1007/BF00022163

Jolly, I. D., McEwan, K. L., & Holland, K. L. (2008). A review of groundwater-surface water interactions
in arid/semi-arid wetlands and the consequences of salinity for wetland ecology. Ecohydrology ,1 (1), 43-58.
https://doi.org/10.1002/eco.6

Jordan, M. M., Navarro-Pedreno, J., Garcia-Sanchez, E., Mateu, J., & Juan, P. (2004). Spatial dynamics of
soil salinity under arid and semi-arid conditions: geological and environmental implications. Environmental
Geology , 45 (4), 448-456. https://doi.org/10.1007/$00254-003-0894-y

Katsaros, K. B., Vachon, P. W., Liu, W. T., & Black, P. G. (2002). Microwave Remote Sensing of Tropical
Cyclones from Space. Journal of Oceanography , 58 (1), 137-151. https://doi.org/10.1023/A:1015884903180

Keydel, W. (2007). Normal and Differential SAR  Interferometry.Radar  Polarime-
try and Interferometry , (October), 3-1-3-36. Retrieved from http://www.dtic.mil/cgi-
bin/GetTRDoc?Location=U2&amp;doc=Get TRDoc.pdf&amp; AD=ADA470882

19



Kim, J.-E., & Hong, S.-Y. (2007). Impact of Soil Moisture Anomalies on Summer Rain-
fall over East Asia: A Regional Climate Model Study.Journal of Climate , 20 (23), 5732-5743.
https://doi.org/10.1175/2006JCLI1358.1

Koevoets, I. T., Venema, J. H., Elzenga, J. T. M., & Testerink, C. (2016). Roots Withstanding their
Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance
.Frontiers in Plant Science . Retrieved from https://www.frontiersin.org/article/10.3389/fpls.2016.01335

Konukeu, F., Gowing, J. W., & Rose, D. A. (2006). Dry drainage : A sustainable solution to wa-
terlogging and salinity problems in irrigation areas ?  Agricultural Water Management , 83 , 1-12.
https://doi.org/10.1016/j.agwat.2005.09.003

Kumar, P., Kumar, A., & Mittal, S. (2004). Total Factor Productivity of Crop Sector in the Indo-Gangetic
Plain of India: Sustainability issues revisited. Indian Economic Review , 89 (1), 169-201. Retrieved from
http://www.jstor.org/stable/29793810

Landauer, R. (1978). Electrical conductivity in inhomogeneous media.AIP Conference Proceedings , 40 (1),
2-45. https://doi.org/10.1063/1.31150

Larson, K. M., Braun, J. J., Small, E. E., Zavorotny, V. U., Gutmann, E. D., & Bilich, A. L. (2010). GPS
Multipath and Its Relation to Near-Surface Soil Moisture Content. IEEE Journal of Selected Topics in Ap-
plied Earth Observations and Remote Sensing , 3 (1), 91-99. https://doi.org/10.1109/JSTARS.2009.2033612

Leckie, D. G. (1984). Advances in remote sensing technologies for forest surveys and management. Canadian
Journal of Forest Research . https://doi.org/https://doi.org/10.1139/x90-063

Levinson, F. J., Mehra, S., Levinson, D., Chauhan, A. K., Koppe, G., Bence, B., & Almedom, A. M.
(2004). Morinda Revisited: Changes in Nutritional Well-Being and Gender Differences after 30 Years
of Rapid Economic Growth in Rural Punjab, India. Food and Nutrition Bulletin , 25 (3), 221-227.
https://doi.org/10.1177/156482650402500301

Lewis, S. L., & Maslin, M. A. (2015). Defining the Anthropocene.Nature , 519 (7542), 171-180.
https://doi.org/10.1038 /nature14258

Liu, H., Lei, T. W., Zhao, J., Yuan, C. P., Fan, Y. T., & Qu, L. Q. (2011). Effects of rainfall intensity and
antecedent soil water content on soil infiltrability under rainfall conditions using the run off-on-out method.
Journal of Hydrology , 396 , 24-32. https://doi.org/10.1016/j.jhydrol.2010.10.028

Lobell, D. B., Thau, D., Seifert, C., Engle, E., & Little, B. (2015). Remote Sensing of
Environment A scalable satellite-based crop yield mapper. Remote Sensing of FEnvironment
https://doi.org/10.1016/j.rse.2015.04.021

Loureiro, S. M. C.,; & Gonzalez, F. J. M. (2008). The Importance of Quality, Satisfaction, Trust, and
Image in Relation to Rural Tourist Loyalty. Journal of Travel & Tourism Marketing , 25 (2), 117-136.
https://doi.org,/10.1080/10548400802402321

Lu, D, & Weng, Q. (2007). A survey of image classification methods and techniques for im-
proving classification performance. International Journal of Remote Sensing , 28 (5), 823-870.
https://doi.org/10.1080/01431160600746456

Lu, Dengsheng, Tian, H., Zhou, G., & Ge, H. (2008). Remote Sensing of Environment Regional mapping
of human settlements in southeastern China with multisensor remotely sensed data. Remote Sensing of
Environment , 112 , 3668-3679. https://doi.org/10.1016/j.rse.2008.05.009

Mahlke, J. (1996). Characterization of Qklahoma Reservoir Wetlands For Preliminary Change Detection
Mapping Using IRS- 1B Satellite Imagery.IEEE Transactions on Geoscience and Remote Sensing , (405).
https://doi.org/10.1109/IGARSS.1996.516795

20



Mayaux, P., Bartholome, E., Fritz, S., & Belward, A. (2004). A new land-cover map of Africa for the year
2000. Journal of Biogeography , 81 (6), 861-877. https://doi.org/10.1111/j.1365-2699.2004.01073.x

Metternicht, G. I., & Zinck, J. A. (2003). Remote sensing of soil salinity : potentials and constraints. Remote
Sensing of Environment , 85 , 1-20. https://doi.org/10.1016/S0034-4257(02)00188-8

Miltner, A., Bombach, P., Schmidt-Brucken, B., & Kastner, M. (2012). SOM genesis: microbial biomass as
a significant source. Biogeochemistry , 111 (1), 41-55. https://doi.org/10.1007/s10533-011-9658-z

Mougenot, B., Pouget, M., & Epema, G. F. (1993). Remote sensing of salt affected soils. Remote Sensing
Reviews , 7 (3-4), 241-259. https://doi.org/10.1080,/02757259309532180

Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food Security : The Challenge
of, 327 (February), 812-819. https://doi.org/10.1126/science.1185383

Pachepsky, Y. A., Guber, A. K., & Jacques, D. (2005). TEMPORAL PERSISTENCE IN VERTICAL
DISTRIBUTIONS OF SOIL MOISTURE CONTENTS.Soil Science Society of America Journal ;, 69 , 347
352. https://doi.org/10.2136 /sssaj2005.0347

Pampaloni, P., & Calvet, J. (2007). Operational readiness of microwave remote sensing of soil moisture for
hydrologic applications. Nordic Hydrology , 1-20. https://doi.org/10.2166/nh.2007.029

Pope, P. T., & Webster, J. T. (1972). The Use of an F-Statistic in Stepwise Regression Procedures. Tech-
nometrics , 14 (2), 327-340. https://doi.org/10.1080/00401706.1972.10488919

Qadir, M., Ghafoor, A., & Murtaza, G. (2000). Amelioration strategies for saline soils: a review. Land Degra-
dation & Development ,11 (6), 501-521. https://doi.org/10.1002/1099-145X(200011/12)11:6<501::AID-
LDR405>3.0.CO;2-S

Qadir, M., & Schubert, S. (2002). Degradation processes and nutrient constraints in sodic soils. Land
Degradation & Development ,13 (4), 275-294. https://doi.org/10.1002/1dr.504

Raina, R. S., Joseph, K. J., & Haribabu, E. (2010). and The Co-evolution of Ex-
clusion in India Systems of Innovation for Inclusive Development : Lessons from Ru-
ral China and India. In The &8th GLOBELICS International Conference . Re-
trieved from https://s3.amazonaws.com/academia.edu.documents/42355672/ Agricultural Inno-
vation_Systems_and_The_20160207-11053-kptho7.pdf ?response-content-disposition=inline%3B file-
name%3DAgricultural Innovation_Systems_and_the.pdf&X-Amz-Algorithm=AWS4-HMAC-SHA256& X-
Amz-Credential=AKIAIWOWYYGZ2Y53UL3A%2F20200203%2Fus-east-1%2Fs3%2Faws4_request&X-
Amz-Date=20200203T064008Z& X- Amz-Expires=3600& X-Amz-SignedHeaders=host& X-Amz-
Signature=6ad828368138e146072471999dc1db67b9c7539¢al3{8¢a80873449397cf0d53

Rapp, A. (1986). Introduction to soil degradation processes in drylands.Climatic Change , 9 (1), 19-31.
https://doi.org,/10.1007/BF00140521

Rengasamy, P. (2010). Soil processes affecting crop production in salt-affected soils. Functional Plant Biology
, 37 (7), 613-620. Retrieved from https://doi.org/10.1071/FP09249

Rengasamy, P., Chittleborough, D., & Helyar, K. (2003). Root-zone constraints and plant-based solutions
for dryland salinity. Plant and Soil , 257 (2), 249-260. https://doi.org/10.1023/A:1027326424022

Reynolds, M., Kropff, M., Crossa, J., Koo, J., Kruseman, G., Milan, A. M., ... Vadez, V.
(2018).  Role of Modelling in International Crop Research : Overview and Some Case Studies.
https://doi.org/10.3390/agronomy8120291

Rhoades, J. D. (1993). ELECTRICAL CONDUCTIVITY M ~ THODS FOR M ~ ASURING AND
MAPPING SOIL SALINITY.Advances in Agronomy . https://doi.org/https://doi.org/10.1016/S0065-
2113(08)60795-6

21



Rhoades, J. D., & Miyamoto, S. (1990, January 1). Testing Soils for Salinity and Sodicity. Soil Testing and
Plant Analysis . https://doi.org/doi:10.2136/sssabookser3.3ed.c12

Rhoades, J. D., Shouse, P. J., Alves, W. J., Manteghi, N. A., & Lesch, S. M. (1990). Determining Soil
Salinity from Soil Electrical Conductivity using Different Models and Estimates. Soil Science Society of
America Journal , 54 (1), 46-54. https://doi.org/10.2136/sss2j1990.03615995005400010007x

Rhoades, J. D., & van Schilfgaarde, J. (1976). An Electrical Conductivity Probe for
Determining Soil Salinity. Soil  Science Society of America Journal , 40 (5), 647-651.
https://doi.org/10.2136 /sss2j1976.03615995004000050016x

Richardson, A. D., & Hollinger, D. Y. (2005). Statistical modeling of ecosystem respiration using eddy
covariance data : Maximum likelihood parameter estimation , and Monte Carlo simulation of model and
parameter uncertainty , applied to three simple models. Agricultural and Forest Meteorology , 131 , 191-208.
https://doi.org/10.1016/j.agrformet.2005.05.008

Riffat, S. B., & Ma, X. (2003). Thermoelectrics : a review of present and potential applications. Applied
Thermal Engineering ,23 , 913-935. https://doi.org/10.1016/S1359-4311(03)00012-7

Ringler, C., Bhaduri, A., & Lawford, R. (2013). The nexus across water , energy , land and food ( WELF
): potential for improved resource use efficiency ? Current Opinion in Environmental Sustainability ,5 (6),
617-624. https://doi.org/10.1016/j.cosust.2013.11.002

Saha, S. K. (2011). Microwave remote sensing in soil quality assessment.International
Archives  of  the  Photogrammetry, Remote  Sensing  and  Spatial  Information  Sci-
ences, Volume — XXXVIII-8/ W20, 2011 L XXXVIIIT  (November). Retrieved  from

https://pdfs.semanticscholar.org/7{7a/0e28b81b726d122695¢8664db3e00660829.pdf

SAHA, S. K., KUDRAT, M., & BHAN, S. K. (1990). Digital processing of Landsat TM data for wasteland
mapping in parts of Aligarh District (Uttar Pradesh), India. International Journal of Remote Sensing ,11
(3), 485-492. https://doi.org/10.1080/01431169008955034

Schmugge, T. J., Kustas, W. P., Ritchie, J. C., & Jackson, T. J. (2002). Remote sensing in hydrology.
Advances in Water Resources 25 (2002) 1367-1385 , 25 , 1367-1385. https://doi.org/10.1016/S0309-
1708(02)00065-9

Shah, T., Molden, D., Sakthivadivel, R., & Seckler, D. (2001). Global Groundwater Situation: Op-
portunities and Challenges. Economic and Political Weekly , 36 (43), 4142-4150. Retrieved from
http://www.jstor.org/stable/4411304

Sharma, R. C., Saxena, R. K., & Verma, K. S. (2000). Reconnaissance mapping and management of
salt-affected soils using satellite images.International Journal of Remote Sensing , 21 (17), 3209-3218.
https://doi.org/10.1080/014311600750019831

Shashi, T. A. and K. (2019). Effect of Phase Filtering on Interferometry based Displace-
ment Analysis of Cultural Heritage Sites. In 2018 5th IEEE Uttar Pradesh Section International
Conference on FElectrical, Flectronics and Computer Engineering (UPCON) (pp. 1-5).  IEEE.
https://doi.org/10.1109/UPCON.2018.8597027

Shirvany, R. (2012). Estimation of the Degree of Polarization in Polarimetric SAR Im-
agery:  Principles & Applications .  University of Toulouse.  Retrieved from http://ethesis.inp-
toulouse.fr/archive/00002034 /01 /shirvany.pdf

Sowter, A., Bin, M., Amat, C., Cigna, F., Marsh, S., & Athab, A. (2016). Mexico City land sub-
sidence in 2014 — 2015 with Sentinel-1 IW TOPS : Results using the Intermittent SBAS ( ISBAS
) technique.International Journal of Applied Earth Observations and Geoinformation , 52 , 230-242.
https://doi.org/10.1016/j.jag.2016.06.015

22



Srivastava, H S, Patel, P., Sharma, Y., & Navalgund, R. R. (2009). Large-Area Soil Moisture Estimation
Using Multi-Incidence-Angle RADARSAT-1 SAR Data. IEEE Transactions on Geoscience and Remote
Sensing , 47 (8), 2528-2535. https://doi.org/10.1109/TGRS.2009.2018448

Srivastava, Hari Shanker, Patel, P., Prasad, S. N.;, Sharma, Y., Khan, B. A.; & Praveen, B. (2008). Potential
Applications of Multi-Parametric Synthetic Aperture Radar ( Sar ) Data in Wetland Inventory : A Case
Study of Keoladeo National Park ( A World Heritage and Ramsar Site ), Bharatpur , India (Vol. 248001,
pp.  1862-1879).  Retrieved from https://s3.amazonaws.com/academia.edu.documents/35332826,/Q-
13.pdf?response-content-disposition=inline%3B filename%3DPotential_Applica-
tions_of_Multi-Para_met.pdf&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-
Credential=AKIAIWOWYYGZ2Y53UL3A%2F20200216%2Fus-east-1%2Fs3%2Faws4 _request& X-
Amz-Date=20200216T170722Z& X- Amz-Expires=3600& X-Amz-SignedHeaders=host& X-Amz-
Signature=8108170de0e06844c4c21{81f28e66a9a165228c4edeedbebdcfb0b837c7e7b8

Stenberg, B., Rossel, R. A. V., Mouazen, A. M., & Wetterlind, J. (2010). Visible and Near Infrared
Spectroscopy in Soil Science. InAdvances in Agronomy (1st ed., Vol. 107, pp. 163-215). Elsevier Inc.
https://doi.org/10.1016/S0065-2113(10)07005-7

Streeter, J., & Wong, P. P. (1988). Inhibition of legume nodule formation and N2 fixation by nitrate. Critical
Reviews in Plant Sciences , 7 (1), 1-23. https://doi.org/10.1080/07352688809382257

Susha Lekshmi, S.; Singh, D., Tarantino, A., & Baghini, M. (2018). Evaluation of the Performance of TDR
and Capacitance Techniques for Soil Moisture Measurement. Geotechnical Testing Journal , 41 (2), 292-306.
https://doi.org/10.1520/GTJ20160240

Tapete, D., Cigna, F., & Donoghue, D. N. M. (2016). “Looting marks” in space-borne SAR imagery:
Measuring rates of archaeological looting in Apamea (Syria) with TerraSAR-X Staring Spotlight. Remote
Sensing of Environment , 178 , 42-58. https://doi.org/10.1016/j.rse.2016.02.055

Tiwari, A. T. and R. K. (2019). C-band SAR Interferometry based flood inundation mapping for Gorakhpur
and adjoining areas. IEFEE XPLORE .

Tripathi, A. and R. K. T. (2019). UTILIZATION OF SPACEBORNE C-BAND SAR DATA FOR ANALY-
SIS OF FLOOD UTILIZATION OF SPACEBORNE C-BAND SAR DATA FOR ANALYSIS OF FLOOD.
In ISPRS Archives (pp. 2-6). https://doi.org/10.5194 /isprs-archives-XLII-3-W6-521-2019

Tripathi, A., Kumar, S., & Maithani, S. (2018). Spaceborne bistatic polarimetrie SAR for scattering analysis
and classification of man-made and natural features. In 2018 3rd International Conference on Microwave
and Photonics, ICMAP 2018 (Vol. 2018-Janua). https://doi.org/10.1109/ICMAP.2018.8354494

Tripathi, Akshar. (2018). Effect of Phase Filtering on Interferometry based Displacement Analysis of
Cultural Heritage Sites. 2018 5th IEEE Uttar Pradesh Section International Conference on FElectrical, Elec-
tronics and Computer Engineering (UPCON) , 1 , 1-5. https://doi.org/10.1109/UPCON.2018.8597027

Tripathi, Akshar, & Maithani, S. (2018). Spaceborne Bistatic Polarimetric SAR for Scat-
tering  Analysis and Classification of Man-made and Natural Features, (May), 10-12.
https://doi.org/10.1109/ICMAP.2018.8354494

Tripathi, Akshar, & Tiwari, R. K. (2019a). Mapping of deflection caused due to hydrostatic
pressure using Differential SAR Interferometry ( DInSAR ) on Bhakhra dam. IEEFE XPLORE .
https://doi.org/10.1109/UPCON47278.2019.8980117

Tripathi, Akshar, & Tiwari, R. K. (2019b). UTILIZATION OF SPACEBORNE C-BAND SAR DATA FOR
ANALYSIS OF FLOOD. In ISPRS Archives (Vol. XLII, pp. 18-20).

Veci, L. (2016). SENTINEL-1 Toolbox SAR Basics Tutorial, (August).

23



Verhoest, N. E. C., Lievens, H., Wagner, W., Susan, M., Mattia, F., Sensing, R., ... Tejos, L. (2008). On
the Soil Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic
Aperture Radar. MDPI Sensors , 4213-4248. https://doi.org/10.3390/s8074213

Viterbo, P., & Betts, A. K. (1999). Impact of the ECMWF reanalysis soil water on forecasts of the
July 1993 Mississippi flood. JOURNAL OF GEOPHYSICAL RESEARCH , 104 (July 1993), 361-366.
https://doi.org/https://doi.org,/10.1029/1999JD900449

Vogt, J. V, Safriel, U., Von Maltitz, G., Sokona, Y., Zougmore, R., Bastin, G., & Hill, J. (2011). Monitoring
and assessment of land degradation and desertification: Towards new conceptual and integrated approaches.
Land Degradation & Development , 22 (2), 150-165. https://doi.org/10.1002/1dr.1075

Wagner, W., Lemoine, G., & Rott, H. (1996). A Method for Estimating Soil Mois-
ture from ERS Scatterometer and Soil Data. Remote Sensing of FEnvironment , 4257 (99).
https://doi.org/https://doi.org/10.1016/50034-4257(99)00036-X

Walker, J. P., Houser, P. R., & Willgoose, G. R. (2004). Active microwave remote sensing for soil mois-
ture measurement : a fi eld evaluation using ERS-2. Hydrological Processes ,1997 (February), 1975-1997.
https://doi.org/10.1002/hyp.1343

Wymann von Dach S, Romeo R, Vita A, Wurzinger M, K. T. (eds). (n.d.).Mountain Farming Is Family
Farming . https://doi.org/http://www.fao.org/docrep/019/i3480e/i3480e.pdf

Wymann von Dach S, Romeo R, Vita A, Wurzinger M, K. T. (eds). 2013. (2014). Mountain Farming Is
Family Farming Mountain Farming Is Family Farming A contribution from mountain areas to the Interna-
tional Year of Family Planning 2014 . Retrieved from https://boris.unibe.ch/46504/1/i3480e.pdf

Xie, J., Li, Y., Zhai, C., Li, C., & Lan, Z. (2009). CO2 absorption by alkaline soils and its implication to the
global carbon cycle. Environmental Geology , 56 (5), 953-961. https://doi.org/10.1007/s00254-008-1197-0

Xie, Y., Sha, Z., & Yu, M. (2008). Remote sensing imagery in vegetation mapping: a review. Journal of
Plant Ecology , 1 (1), 9-23. https://doi.org/10.1093/jpe/rtm005

Yang, H., Yang, X., Xu, X., Gao, Z., Li, C., Wang, J., & Zhao, C. (2011). Potential of Fully Polarimetric
SAR Data for Crops Biophysical Parameters Retrieval.

Zhang, Y., Pulliainen, J., Koponen, S., & Hallikainen, M. (2002). Application of an empirical neural network
to surface water quality estimation in the Gulf of Finland using combined optical data and microwave
data. Remote Sensing of Environment , 81 , 327-336. https://doi.org/https://doi.org/10.1016/S0034-
4257(02)00009-3

Zhou, T., Pan, J., Zhang, P., Wei, S., & Han, T. (2017). Mapping Winter Wheat with Multi-Temporal SAR
and Optical Images in an Urban Agricultural Region, 1-16. https://doi.org/10.3390/s17061210

24



