
P
os

te
d

on
A

u
th

or
ea

28
A

u
g

20
20

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

86
33

10
.0

91
15

7
5
6

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Pline: automatic generation of modern web interfaces for

command-line programs

Andres Veidenberg1 and Ari Löytynoja1

1Institute of Biotechnology, University of Helsinki, Finland

August 28, 2020

Abstract1

Background: Bioinformatics software often lacks graphical user interfaces (GUIs), which can limit its adoption by non-2

technical members of the scientific community. Web interfaces are a common alternative for building cross-platform GUIs,3

but their potential is underutilized: web interfaces for command-line tools rarely take advantage of the level of interactivity4

expected of modern web applications and are rarely usable offline.5

Results: Here we present Pline: a lightweight framework that uses program descriptions and web standards to generate6

dynamic GUIs for command-line programs. We introduce a plugin system for creating Pline interfaces and provide an7

online repository for sharing third-party plugins. We demonstrate Pline’s versatility with example interfaces, a graphical8

pipeline for sequence analysis and integration to Wasabi web application.9

Conclusions: Pline is cross-platform, open-source software that can be integrated to web pages or used as a standalone10

desktop application. Pline provides graphical interfaces that are easy to create and maintain, fostering user-friendly software11

in science. Documentation, demo website, example plugins and source code is freely available from http://wasabiapp.12

org/pline.13

Keywords: Bioinformatics; Software Engineering; User Interfaces; Web Technologies14

Background15

Graphical user interfaces (GUI) are an essential part of modern software, providing users with an intuitive16

method to access all of the functionality offered by a program. A well-designed GUI guides users by, for17

example, displaying relevant actions, adapting to user input, providing info tooltips and other visual cues.18

Software developed for research purposes, however, rarely includes a GUI, relying solely on the command19

line interface (CLI). The CLI is appropriate for advanced users, who can then quickly integrate new20

software into existing pipelines, but it comes with a steep learning curve (that may never be overcome) for21

non-technical users. CLIs are sensitive to typing errors, requiring users to remember which command-line22

options need to be included to run a program effectively. Moreover, command-line tools generally have a23

single, well-defined function and therefore require additional programs to view or post-process the output,24

further complicating their usage. These issues may appear trivial, but, in practice, they dramatically25

limit the number of potential users to those who are already comfortable using the command-line.26

GUIs make programs more user-friendly and ease the adoption of novel computational tools. While the27

inclusion of GUIs is in the interest of both developers and users, there is little incentive to code a native28

graphical user interface. Many journals are dismissive of the scientific contribution offered by more usable29

software and development teams in academia tend to be constrained in terms of members (Mangul et al.,30

2019). A common compromise is to set up an online service where a web interface is used to launch a31

CLI program on a remote server. This provides cross-platform, installation-free access to the software,32

but has many disadvantages: (i) it requires a web server, necessitating additional setup, programming33

and maintenance; (ii) it cannot be used offline; and (iii) it is limited by the fact that users need to34

share the available network and CPU resources. Furthermore, such web interfaces tend to be based35

on basic HTML forms with little interactivity to guide the users. While it is possible to develop more36

1

http://wasabiapp.org/pline
http://wasabiapp.org/pline
http://wasabiapp.org/pline


P
os

te
d

on
A

u
th

or
ea

28
A

u
g

20
20

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

86
33

10
.0

91
15

7
5
6

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

sophisticated web interfaces, this requires extensive knowledge of web technologies like CSS (Cascading37

Style Sheets) and JavaScript, and can take a long time to develop.38

Although it is considerably easier to implement a web service than a native GUI, integrating multiple39

programs remains a challenge. Both the web interface and the server side code needs to be built for a40

specific CLI program. Moreover, most of the user input processing and related code typically resides on41

the server that is hidden from the users. This causes redundancy, because the web interfaces cannot be42

reused by third-party developers for modification and therefore need to be created from scratch. The is-43

sue could be addressed by standardizing communication between a graphical interface and the underlying44

CLI tool. Some specification standards have been developed, like the Common Workflow Language (cwl)45

or the Galaxy tools XML (Afgan et al., 2018), that define how to describe a CLI program in a text file.46

Scientific workflow management systems (e.g. Taverna (Wolstencroft et al., 2013) or CWL implemen-47

tations like Arvados (arv)) utilize this information to integrate external programs and, in some cases48

(e.g. Galaxy), also for creating the graphical interface elements. However, these standards are optimized49

for building pipelines and therefore omit GUI-specific instructions. In addition, setting up and running50

a workflow management system together with its environment (e.g. a dedicated web server, system51

container or virtual machine) adds unnecessary overhead when used only for creating a GUI for a CLI52

program.53

Here, we introduce Pline (“ Plugin interface language” ): a specification for describing command line54

programs and their interfaces, and a lightweight framework that uses these descriptions to generate55

interactive graphical user interfaces. By utilizing standardization and web technologies, Pline allows56

for creation of graphical user interfaces for command-line programs without programming, considerably57

lowering the bar to develop user-friendly software in science.58

Pline aims to be a practical tool for adding GUIs for CLI programs. To that end, Pline-generated inter-59

faces address many of the limitations in web-based GUI development by filling a number of requirements:60

• cross-platform: Pline interfaces run on any device with a web browser61

• embeddable: the interfaces can be placed into existing web content62

• programming-free: interface source code is automatically generated63

• self-contained : CLI programs and its GUI are can be run as a standalone application64

• user-friendly : the graphical interfaces guide users with interactivity and info tooltips65

In this work, we utilize Pline in the context of bioinformatics, adding GUIs and a graphical pipeline to a66

number of command-line analysis tools. However, Pline’s approach for generating GUIs is generic and67

can be applied to any field, including use cases outside the CLI domain.68

Implementation69

On technical level, Pline is a graphical user interface generator that wraps command-line programs to70

self-contained web applications. Each web application consists of three parts: Pline interface generator,71

a command-line executable together with its description file, and the Pline server module. The workflow72

of the web application can be divided to three steps:73

1. Construction of a formal description of the underlying command-line program in a text file. This74

needs to be done only once for each program.75

2. When the application is launched in a web browser, Pline reads the description file to generate its76

graphical user interface.77

3. The GUI then incorporates the user input to construct the final CLI command and forwards it to78

the server module for execution.79

This process is illustrated by a working example in Figure 1. Here, three input parameters for a command-80

line script is specified in the description file. Each parameter is then translated to the corresponding81

input element in the resulting web interface and placed in the specified order to the output command.82

Each of these steps is described in more detail in the following sections.83

2



P
os

te
d

on
A

u
th

or
ea

28
A

u
g

20
20

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

86
33

10
.0

91
15

7
5
6

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Figure 1: Example of a Pline application workflow. Pline uses a program description (top) to gener-
ate corresponding graphical interface (middle), which in turn produces the program launch command
(bottom). Colored triangles highlight the location of the program parameters in each workflow stage.

Pline plugin API84

For describing command-line interfaces, Pline defines an application programming interface (API) specifi-85

cation based on JSON standard. JSON (JavaScript Object Notation) is a common format for representing86

structured data in human-readable text (jso). A Pline web application can include one or more Pline87

plugins – CLI programs and their JSON descriptions stored in text files. These files inform Pline on88

how to launch the underlying program as well as how to draw its user interface.89

With the plugin API, a CLI program is defined using a list of valid command-line arguments, where each90

argument is described with property/value pairs and grouped with nested brackets. Pline utilizes this91

notation to effectively describe interactive GUIs: the data (a set of properties with values) defines the92

underlying functionality, while its structure (the order and nesting of parameters) reflects the placement93

of resulting interface elements. Since most of the API properties are optional, basic interfaces are quick94

to construct. The only compulsory data fields are the executable name and the type (or name) of each95

input argument. A simple example is shown in Figure 1. Here, the JSON description specifies a python96

script that expects an input file (as a positional argument), followed by a boolean flag named “–count”97

and a text input called “–out” (both optional, named arguments). Using Pline API, this information is98

presented with a compact piece of JSON: {"file": ""}, {bool: "--count"}, {"text": "--out"}.99

The rest of the properties shown in the figure specify optional functionality. For example, "required"100

adds a check for filling the file input and the accompanying error message, while "title", "default"101

and "desc" will display relevant information in specific places in the resulting interface.102

3



P
os

te
d

on
A

u
th

or
ea

28
A

u
g

20
20

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

86
33

10
.0

91
15

7
5
6

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Input arguments are often related. The set of valid arguments, their expected values, and the interpre-103

tation of (even the same) values by a command-line program may change depending on how the user has104

filled some other, related input argument. In the Pline JSON format, the network of linked inputs1 is105

described by setting rules for the input properties that support it. For example, instead of a fixed default106

value for an input, a rule can derive the value from another input. These rules are written as conditionals107

– English-like if-else sentences (or alternatively, JavaScript statements), where the action of the rule is108

defined by the property that the rule is attached to. To illustrate, the static "default" property of109

the --out parameter in Figure 1 could be replaced with a dynamic one: "default": "'foo.txt' if110

count, else 'bar.txt'". This rule would swap the default parameter value (and show it in the text111

input) depending on whether the checkbox element (controlling the --count parameter) is ticked. In112

addition to setting the default value, Pline supports conditionals for dynamically formatting or fixing an113

input value, for specifying an output file name and for enabling or disabling input elements and element114

groups. Together with other advanced features like input filters, error messages and merged values, the115

Pline API allows for describing even highly complex command-line interfaces. To customize the result-116

ing GUI, the API also specifies properties for adding icons, labels, documentation, HTML markup and117

CSS rules.118

1 When used on its own, the term input refers to a CLI program argument and its represen-119

tation in the JSON, the GUI, and the command-line form (see Figure 1).120

Interface rendering121

After a plugin JSON has been added to a Pline web application, it’s ready to launch its GUI. For that,122

Pline includes an interface generator that implements the plugin API, translating program descriptions123

into graphical user interfaces at runtime. The generator is written in JavaScript, runs natively inside124

any modern web browser, and is incorporated to web pages as a library. The library exposes functions125

like addPlugin() for importing plugin descriptions and plugin.draw() for rendering interfaces for the126

imported plugins. The first function translates a plugin description (given as URL or raw text) to127

an internal data model, whereas the second one converts the model to the final interface (HTML and128

JavaScript code) and places it to a chosen container in the web page. Integrating Pline to any web129

content is therefore straightforward - the default web page in Pline web application is a blank container130

that populates its interface by calling these functions for any description files it finds from its plugins131

folder.132

In the example in Figure 1, Pline has translated each parameter in the JSON to corresponding input133

element in the interface. Pline supports both simple input types like text, files, checkboxes or selection134

lists, and advanced ones that merge or modify values from linked inputs. In addition to input elements,135

Pline interface includes a header that displays the program description and provides an option to name136

the program execution session, as well as to save or restore sets of user input values.137

A Pline-generated GUI is not static – the HTML interface is bound to an internal data model and event138

listeners that enforce the dependency rules between the program parameters and adjust the interface139

according to user interactions. User input is tracked in real-time: as soon as a tick-box is clicked140

or a number is typed, the interface updates accordingly, e.g. by hiding, revealing, or changing the141

values of all the linked input elements. The conditionals in the Pline JSON therefore provide a quick142

way to construct sophisticated interfaces that hide invalid inputs and guide the user through program143

configuration options. In addition to generating standalone GUIs, Pline can chain multiple interfaces144

together, forming a pipeline – a set of commands executed in succession. The information about input145

and output files in the program description is used to control the data flow between the pipeline steps.146

The current state of a single interface or a full pipeline can be stored to a file and distributed as a147

reusable Pline pipeline with pre-filled input values.148

By default, Pline stacks interface elements (e.g. inputs and pipeline sections) into a single column. This149

layout is optimized for tight spaces, like windowing systems in web applications or mobile device screens.150

In plugin JSON, the inputs can be rearranged to rows and static or collapsible sections by grouping the151

elements with brackets. For further interface customization (e.g. element spacing, dimensions and the152

color scheme), the styling rules in the included CSS file can be modified, overriden by the host website153

or replaced altogether (e.g. with a CSS library like Bootstrap(boo)).154

4



P
os

te
d

on
A

u
th

or
ea

28
A

u
g

20
20

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

86
33

10
.0

91
15

7
5
6

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Command-line management155

The “Run” button in the plugin interface initiates the third workflow step: the application checks for156

missing user input, prepares the input files and constructs the terminal command for launching the CLI157

program (or pipeline). For the interface shown in Figure 1, it would display an error message “Input file158

missing” next to the empty file input, since the associated parameter is marked as compulsory in the159

source JSON. Filling all the inputs would produce a command with three parameters as shown on the160

figure together with a confirmation message on the submission button.161

Next, the CLI program is launched by the Pline-generated web application. Since the web browser162

security sandbox prevents direct command-line access, the program launch data is passed on to a backend163

server for execution. Pline includes a lightweight python script that acts as a server module to launch164

the commands, either on a local computer or over the web. The Pline server accepts the command data165

sent by the interface via an HTTP request, sanitizes the input, and manages the execution process. It166

also supports follow-up requests to send execution status updates back to the interface, pause, cancel or167

resume running pipelines, or send email notifications after a command or pipeline has finished.168

Results169

Plugin repository170

New graphical interfaces are added to a Pline web application by supplying the corresponding JSON171

description files, either by copying them into the designated plugin directory (when using with standalone172

web application), or by passing JSON data directly to the Pline interface generator (using addPlugin()).173

In principle, a Pline GUI can be generated for any command-line executable, including installed programs174

that are available system-wide. However, the JSON description is written for a specific version of a175

program and it is recommended that the matching executable is distributed together with its description176

file, forming a plugin. For collecting and sharing Pline plugins, we have created a public repository as177

part of the Pline homepage (hom). At the time of writing, it contains 11 plugins for CLI programs used178

in phylogenetic and short-read sequence analyses. Plugins can be downloaded both as JSON files (useful179

for website integration or as a template for new plugins), as well as standalone applications (includes180

Pline, the JSON and the CLI program). The repository webpage is also an example of integrated Pline,181

which is used to generate a working interface for each plugin in the list. Similarly, a live version of the182

GUI shown in Figure 1 is available on the Pline front page. The plugin files are sourced from a dedicated183

GitHub repository, where third-party plugin contributions can be made via Git pull requests. Updates184

and additions to the plugins list are automatically shown on the Pline repository webpage.185

The downloadable Pline applications are designed to be installation-free and work across many different186

operating systems. The JSON program description files are platform-agnostic, the interface generator187

runs on any device with a modern web browser (including mobile devices), and the server module supports188

both Python 2.7 and 3 environments (which are preinstalled on most MacOS and Linux systems).189

However, binary command-line executables are compiled to run on a specific operating system, so a Pline190

plugin should to include an executable for each target system. To reduce file size, the plugins on the191

repository page are provided in multiple versions for different operating systems (currently for Linux and192

MacOS).193

Integration into Wasabi194

Pline does not contain binary executables, consisting of human-readable text files written in HTML,195

JavaScript and CSS (Python for the server module). Similar to other web pages, a Pline application is196

easy to modify and customize (e.g. changing the GUI appearance by editing CSS rules). In addition,197

Pline-generated interfaces are self-contained web elements and the JavaScript library can be extended198

with custom functions to modify any step in the interface generation process. This flexibility is especially199

useful for integrating Pline into existing web pages.200

5



P
os

te
d

on
A

u
th

or
ea

28
A

u
g

20
20

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

86
33

10
.0

91
15

7
5
6

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

As an example of extensive integration, we added Pline to Wasabi, a web-based environment for evolu-201

tionary sequence analyses (was). With Pline, we were able to integrate external analysis programs into202

Wasabi’s graphical interface as plugins without having to write program-specific interfaces and related203

code from scratch. Wasabi-specific features were added to the Pline interface generator as extensions.204

For example, an additional function in the plugin registration step makes a pop-up menu showing all205

the available plugins in Wasabi. Other additions automatically convert user-supplied files to the correct206

format, show the status updates of running programs in the Wasabi menu bar, and collects the resulting207

output files in an analysis database. The extensions are available as open-source software at Wasabi208

homepage (was).209

Since Wasabi is designed for evolutionary sequence analysis, the list of integrated plugins include tools210

for related tasks: PRANK (Löytynoja and Goldman, 2005), PAGAN (Löytynoja et al., 2012) and211

MAFFT (Katoh and Standley, 2013) for multiple sequence alignment; FastTree (Price et al., 2010)212

for phylogenetic inference; CodeML (Yang, 2007) for tests of positive selection. All these plugins are also213

available in the plugins repository. Out of these programs, CodeML has the most complex interface and214

serves as a comprehensive example that utilizes a majority of the options available in the Pline API. The215

CodeML interface in Wasabi windowing system is shown in Figure 2. The CodeML plugin JSON (and216

therefore its interface) includes multiple presets – stored sets of pre-filled argument values – that are217

useful for running common configurations of selection models and related parameters. When users select218

a preset, the interface hides or reveals the relevant inputs, fills these with default values and enables219

the corresponding models from a set of tick boxes. When the user modifies an input that is part of the220

selected preset, the interface checks for dependencies and changes the preset selection as the combination221

of the input values no longer matches the initial preset. As an example of proxy inputs, the set of model222

selection tick boxes are converted to their corresponding command-line form as a single argument that223

consists of a string of numbers representing the selected model. As CodeML takes the input arguments224

through a configuration file, the "configfile" and "valuesep" properties in the JSON data instruct225

Pline to store the argument values as a whitespace-delimited text file and to launch the program with226

the file path as its only input argument.227

6

https://paperpile.com/c/ZY3qw1/wRJv


P
os

te
d

on
A

u
th

or
ea

28
A

u
g

20
20

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

86
33

10
.0

91
15

7
5
6

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Figure 2: Pline interface for the CodeML plugin, rendered inside the Wasabi interface window (note the
top title bar). The input files (marked with the paperclip icon) have been automatically supplied by the
Wasabi environment. Info icons and underlined text show relevant tooltips on mouseover.

Example pipeline228

The “Add a step” button at the bottom of the Pline interface allows users to quickly build a pipeline of229

commands by picking programs from the list of imported plugins. The plugin interfaces are drawn as a230

stack of collapsible sections, numbered by the order of execution. When all the inputs have been filled231

as needed, the resulting pipeline can be stored in a JSON file with the “Import/Export” button. The232

button also allows for restoring pipelines from existing JSON files to be rerun (e.g. with different input233

files), providing a convenient system for reusable and distributable graphical pipelines for command-line234

programs.235

The Pline repository website includes an example analysis pipeline that maps short sequencing reads to a236

reference genome. It consists of four steps, starting with BWA-MEM (Li and Durbin, 2009) for mapping237

reads, followed by a series of Samtools commands (Li et al., 2009) for converting, sorting and indexing238

the sequencing reads pileup (see Figure 3). The downloadable plugin package includes all the files needed239

for standalone execution, including JSON descriptions of the pipeline and plugins, the Pline interface240

generator and example input sequence data. Double-clicking the Pline executable will launch the server241

module and open a web browser window with the graphical pipeline interface. Each of the pipeline242

sections can be expanded with a mouse click to examine and modify the pre-filled inputs as needed. For243

example, the merged sections for the first two steps indicate that these programs are launched as a piped244

7



P
os

te
d

on
A

u
th

or
ea

28
A

u
g

20
20

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

86
33

10
.0

91
15

7
5
6

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

command, where the output from the first program (BWA-MEM ) is directly streamed as input for the245

second one (Samtools view ). By changing the file input selection in the Samtools view interface from246

“pipe” to “standard output”, the commands will be separated and the intermediate output file will be247

instead written to disk. After the included example files have been dragged to their respective file drop248

areas in the BWA-MEM interface, the pipeline can be run.249

Although the web page container in the example pipeline package includes a minimal interface for250

displaying the status and the results of the pipeline after it has been launched, this functionality is251

outside the scope of the Pline interface generator. Instead, Pline offers a framework for web developers252

and scientists to integrate graphical interfaces for command-line programs to websites with very low253

effort, especially when the needed plugin descriptions are already available. However, the example code254

for the post-launch interface in the plugin package and Wasabi are open-source and can be used as-is255

or modified for custom integration. When Pline plugin is used as a standalone interface in desktop256

application form, the results retrieval interface is not needed as the files are directly accessible in the257

work directories specified by the Pline server configuration file.258

Figure 3: Graphical interface of the example pipeline, generated after importing its JSON file. The first
pipeline step (BWA index) has been expanded showing the file input that has been automatically filled
with example data.

Discussion259

The lack of graphical user interfaces is a common limitation of published computational tools, inhibiting260

their adoption by a wider scientific community. The importance of user-friendly analysis software in261

bioinformatics is indicated by the popularity of graphical environments for command-line analysis pro-262

grams. For example, the commercially licensed Geneious software, which provides common command-line263

tools in a user-friendly analysis environment, advertises itself as the most cited software in molecu-264

lar biology and sequence analysis (gen). Well-known open-source alternatives to Geneious include the265

UGENE (Okonechnikov et al., 2012) desktop application (which has a fixed set of tools) and web266

applications like qPortal (Mohr et al., 2018) or Galaxy (Afgan et al., 2018).267

8



P
os

te
d

on
A

u
th

or
ea

28
A

u
g

20
20

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

86
33

10
.0

91
15

7
5
6

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Since a significant amount of development and maintenance effort for GUI applications is dedicated268

to its interface (typically 45-50% as estimated by (Myers and Rosson, 1992)), it’s understandable why269

most scientific software omit it. Pline provides a practical solution for the issue by translating simple270

JSON-based descriptions to fully-functional graphical GUIs. The concept of converting abstract data271

descriptions to user interfaces has been a subject of decades of research in the field of Model-Based272

User Interface Development (MBUID). In this approach, conceptual data models, which describe various273

aspects of an application (e.g. user tasks and UI presentation), are converted through multiple abstraction274

levels to final user interface (Meixner et al., 2011). Similar to Pline API, MBUID allows designers to275

describe user interfaces without worrying about the implementation details. However, in contrast to276

MBUID tools like EMUGEN (Brandl, 2002) and Mocadix (Vanderdonckt and Nguyen, 2019) that are277

designed to build heterogenous user interfaces for various use cases and environments, Pline has a much278

narrower scope. It trades the flexibility and complexity of MBUID for automation and ease of use, aiming279

to make GUI development for CLI programs as effortless as possible.280

In essence, Pline is an interface generator that constructs form-based graphical interfaces for command-281

line programs. Over the years, many tools have been developed that overlap some aspects of Pline’s282

functionality. Some examples like FormGen (Brandl and Klein, 1999) and Dynamic Forms (Girgensohn283

et al., 1995) are code generators for input forms, (pys) and Gooey (goo) aid python developers to add284

GUIs to their program, while UGUI (app) links web interfaces to CLI programs. Perhaps the most similar285

tool to Pline is Javamatic (Phanouriou and Abrams, 1997), which reads XML-based CLI descriptions286

to generate GUIs as Java applets. However, development of the tool was discontinued many years ago287

and it is no longer available for download.288

Pline is a modern take on user-interface generators, building on the rapid development of web technologies289

and addressing some of the limitations in web-based GUI development. As a result, Pline interfaces are290

compatible with third-party web pages and also work as a standalone desktop application. In addition,291

Pline is well supported by its homepage (pli) that contains detailed documentation, tutorial videos and292

the plugins repository.293

In addition, Pline’s modular design allows for some of its functionality to be used independently of294

the CLI. The JSON plugin files, for example, could be used as information for generating human-295

readable documentation or converted to another format for use in workflow management systems. Also,296

the extensibility of Pline interface generator allows to use it for drawing form-based web interfaces297

outside of CLI domain. And since Pline-generated interfaces uses HTTP communication standard, the298

server module can easily be replaced with e.g. a backend from another website, further facilitating GUI299

integration. The Pline server module, however, is a lightweight and installation-free implementation300

of a web server that allows to run Pline interfaces as a standalone desktop application. With some301

modifications and using frameworks like Electron (ele), the Pline web application can be converted to a302

platform-specific native application with the accompanying user convenience and performance benefits.303

Although making new Pline plugins does not require programming, manually writing the JSON data304

fields assumes some technical knowledge and, for larger plugins, can be a tedious task. This can be305

addressed in a couple of ways:306

• Since the plugin JSON is a form of machine-readable program documentation, it could be converted307

to/from other similar formats (e.g. CWL (cwl)).308

• Instead of writing a Pline plugin from scratch, it could be programmatically translated from e.g.309

a CWL description file, a CLI program help text or the Unix man page.310

• To make the creation of Pline plugins as simple as possible, the JSON could be constructed using311

a graphical web page (that itself could be made with the help of Pline).312

The converters and a graphical builder tool for making Pline plugins are the subject of future work.313

Conclusions314

Pline addresses the challenges in development of GUIs for command-line tools with a lightweight frame-315

work that utilizes simple data formats, code generation, and modern web technologies. This results316

9



P
os

te
d

on
A

u
th

or
ea

28
A

u
g

20
20

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

86
33

10
.0

91
15

7
5
6

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

in dynamic user interfaces that work cross-platform, including mobile devices. The JSON-based pro-317

gram descriptions allows creating, maintaining and sharing sophisticated interfaces without programming318

skills. We hope that the lower threshold of building graphical user interfaces earns Pline significant com-319

munity support, resulting in a wide variety of graphical interfaces available in the online repository and320

promoting user-friendly software in science.321

Availability and requirements322

• Project name: Pline323

• Project home page: http://wasabiapp.org/pline324

• Operating systems: Platform independent325

• Programming language: JavaScript, Python326

• Other requirements: Web browser (Chrome, Safari, Firefox), Python 2.7+ or 3.0+327

• License: MIT328

List of abbreviations329

• API - Application Programming Interface330

• CLI - Command-line Interface331

• CSS - Cascading Style Sheets332

• GUI - Graphical User Interface333

• MBUID - Model-Based User Interface Development334

Declarations335

Ethics approval and consent to participate336

Not applicable.337

Consent for publication338

Not applicable.339

Availability of data and materials340

The datasets analysed in the example pipeline are available in the Pline repository (http://wasabiapp.341

org/pline/downloads).342

Competing interests343

The authors declare that they have no competing interests.344

Funding345

Not applicable.346

Authors’ contributions347

AV designed and implemented Pline, example plugins and the example pipeline, and wrote the348

manuscript. AL supervised the project, designed the example pipeline and was a major contributor349

in writing the manuscript. All authors read and approved the final manuscript.350

10

http://wasabiapp.org/pline
http://wasabiapp.org/pline/downloads
http://wasabiapp.org/pline/downloads
http://wasabiapp.org/pline/downloads


P
os

te
d

on
A

u
th

or
ea

28
A

u
g

20
20

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

86
33

10
.0

91
15

7
5
6

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Acknowledgements351

We thank Alan Medlar for his assistance in the writing process.352

References353

UGUI. https://ugui.io. Accessed: 01.08.2020.354

Arvados. https://arvados.org. Accessed: 01.08.2020.355

Bootstrap. https://getbootstrap.com. Accessed: 01.08.2020.356

Common Workflow Language. https://commonwl.org. Accessed: 01.08.2020.357

Electron. https://electronjs.org. Accessed: 01.08.2020.358

Geneious. https://geneious.com. Accessed: 01.08.2020.359

Gooey. https://github.com/chriskiehl/Gooey. Accessed: 01.08.2020.360

Pline homepage. http://wasabiapp.org/pline. Accessed: 01.08.2020.361

JSON. https://json.org. Accessed: 01.08.2020.362

Pline homepage. http://wasabiapp.org/pline. Accessed: 2020-4-24.363

PySimpleGUI. https://opensource.com/article/18/8/pysimplegui. Accessed: 01.08.2020.364

Wasabi. http://wasabiapp.org. Accessed: 01.08.2020.365

Enis Afgan, Dannon Baker, Bérénice Batut, Marius van den Beek, Dave Bouvier, Martin Cech, Chilton366

John, Dave Clements, Nate Coraor, Grüning Björn A, Aysam Guerler, Jennifer Hillman-Jackson,367

Saskia Hiltemann, Vahid Jalili, Helena Rasche, Nicola Soranzo, Jeremy Goecks, James Taylor, Anton368

Nekrutenko, and Daniel Blankenberg. The Galaxy platform for accessible, reproducible and collabo-369

rative biomedical analyses: 2018 update. Nucleic Acids Res., 46(W1):W537–W544, jul 2018.370

Alfons Brandl. Concepts for Generating Multi-User Interfaces Including Graphical Editors. In Computer-371

Aided Design of User Interfaces III, pages 167–178. Springer Netherlands, 2002. doi: 10.1007/978-94-372

010-0421-3 15. URL https://doi.org/10.1007%2F978-94-010-0421-3_15.373

Alfons Brandl and Gerwin Klein. FormGen: A Generator for Adaptive Forms Based on EasyGUI. In374

Human-Computer Interaction: Ergonomics and User Interfaces, pages 1172–1176, 01 1999.375

Andreas Girgensohn, Beatrix Zimmermann, Alison Lee, Bart Burns, and Michael E. Atwood. Dynamic376

Forms: An Enhanced Interaction Abstraction Based on Forms. In IFIP Advances in Information and377

Communication Technology, pages 362–367. Springer US, 1995. doi: 10.1007/978-1-5041-2896-4 60.378

URL https://doi.org/10.1007%2F978-1-5041-2896-4_60.379

Kazutaka Katoh and Daron M Standley. MAFFT multiple sequence alignment software version 7:380

improvements in performance and usability. Mol. Biol. Evol., 30(4):772–780, apr 2013.381

Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows-Wheeler. Bioinfor-382

matics, 25(14):1754–1760, jul 2009.383

Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth, Abeca-384

sis Goncalo, Richard Durbin, and 1000 Genome Project Data Processing Subgroup. The Sequence385

Alignment/Map format and SAMtools. Bioinformatics, 25(16):2078–2079, aug 2009.386

Ari Löytynoja and Nick Goldman. An algorithm for progressive multiple alignment of sequences with387

insertions. Proc. Natl. Acad. Sci. U. S. A., 102(30):10557–10562, jul 2005.388

Ari Löytynoja, Albert J Vilella, and Nick Goldman. Accurate extension of multiple sequence alignments389

using a phylogeny-aware graph algorithm. Bioinformatics, 28(13):1684–1691, jul 2012.390

11

https://commonwl.org
http://wasabiapp.org/pline
https://doi.org/10.1007%2F978-94-010-0421-3_15
https://doi.org/10.1007%2F978-1-5041-2896-4_60


P
os

te
d

on
A

u
th

or
ea

28
A

u
g

20
20

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

86
33

10
.0

91
15

7
5
6

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Serghei Mangul, Lana S Martin, Eleazar Eskin, and Ran Blekhman. Improving the usability and archival391

stability of bioinformatics software. Genome Biol., 20(1):47, feb 2019.392

Gerrit Meixner, Fabio Paternò, and Jean Vanderdonckt. Past Present, and Future of Model-Based User393

Interface Development. i-com, 10(3):2–11, nov 2011. doi: 10.1524/icom.2011.0026. URL https:394

//doi.org/10.1524%2Ficom.2011.0026.395

Christopher Mohr, Andreas Friedrich, David Wojnar, Erhan Kenar, Aydin Can Polatkan, Marius Cosmin396

Codrea, Stefan Czemmel, Oliver Kohlbacher, and Sven Nahnsen. qPortal: A platform for data-driven397

biomedical research. PLoS One, 13(1):e0191603, jan 2018.398

Brad A. Myers and Mary Beth Rosson. Survey on user interface programming. In Proceedings of399

the SIGCHI conference on Human factors in computing systems - CHI '92. ACM Press, 1992. doi:400

10.1145/142750.142789. URL https://doi.org/10.1145%2F142750.142789.401

Konstantin Okonechnikov, Olga Golosova, Mikhail Fursov, and UGENE team. Unipro UGENE: a unified402

bioinformatics toolkit. Bioinformatics, 28(8):1166–1167, apr 2012.403

Constantinos Phanouriou and Marc Abrams. Transforming command-line driven systems to Web appli-404

cations, 1997.405

Morgan N Price, Paramvir S Dehal, and Adam P Arkin. FastTree 2–approximately maximum-likelihood406

trees for large alignments. PLoS One, 5(3):e9490, mar 2010.407

Jean Vanderdonckt and Thanh-Diane Nguyen. MoCaDiX. Proceedings of the ACM on Human-Computer408

Interaction, 3(EICS):1–40, jun 2019. doi: 10.1145/3331159. URL https://doi.org/10.1145%409

2F3331159.410

Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams, David Withers, Stuart Owen,411

Stian Soiland-Reyes, Ian Dunlop, Aleksandra Nenadic, Paul Fisher, Jiten Bhagat, Khalid Belhajjame,412

Bacall Finn, Alex Hardisty, Abraham Nieva de la Hidalga, Maria P Balcazar Vargas, Shoaib Sufi, and413

Carole Goble. The Taverna workflow suite: designing and executing workflows of Web Services on the414

desktop, web or in the cloud, 2013.415

Ziheng Yang. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol., 24(8):1586–1591,416

aug 2007.417

12

https://doi.org/10.1524%2Ficom.2011.0026
https://doi.org/10.1524%2Ficom.2011.0026
https://doi.org/10.1524%2Ficom.2011.0026
https://doi.org/10.1145%2F142750.142789
https://doi.org/10.1145%2F3331159
https://doi.org/10.1145%2F3331159
https://doi.org/10.1145%2F3331159

