Among-individual diet variation within a lake trout ecotype: lack
of stability of niche use.
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Abstract

In a polymorphic species, stable differences in resource use are expected among ecotypes, and homogeneity in resource use
is predicted within an ecotype. Yet, using a broad resource spectrum has been identified as a strategy for fishes living in
unproductive northern environments, where food is patchily distributed and ephemeral. We investigated whether individual
specialization of trophic resources occurred within the generalist piscivore ecotype of lake trout from Great Bear Lake, Canada,
reflective of a form of diversity. Four distinct dietary patterns of resource use within the lake trout ecotype were detected
from fatty acid composition, with some variation linked to spatial patterns within Great Bear Lake. Feeding habits of different
groups within the ecotype were not associated with detectable morphological or genetic differentiation, suggesting that behavioral
plasticity caused the trophic differences. A low level of genetic differentiation was detected between exceptionally large-sized
individuals and other individuals. Investigating a geologically young system that displays high levels of intraspecific diversity
and focusing on individual variation in diet suggested that individual trophic specialization can occur within an ecotype. The
characterization of niche use among individuals, as done in this study, is necessary to understand the role that individual

variation can play at the beginning of differentiation processes.

Introduction:

Phenotypic diversity within fish species that have colonized post-glacial lakes often represent early stages
of species diversification (Snorrason et al., 2004). Many fishes that have colonized post-glacial freshwater
systems are assumed to have been plastic generalists (i.e., flexible in use of habitat and food resources) at
the time of colonization (Skulason et al., 2019; Snorrason et al., 2004). Given the novel environment and new
ecological opportunities, a newly established population may begin to display among-individual differences
in behavior and other phenotypic characteristics (Svanbéck et al., 2007). Phenotypic plasticity, the capacity
for one genotype to produce different phenotypes in response to environmental cues, could be a character
subject to selection, facilitating the process of diversification (De Jong, 2005). Despite uncertainties of how
phenotypic plasticity promotes divergence, plasticity appears to serve as an important element in early phases
of diversification (Handelsman et al., 2013; Nonaka et al., 2015; Snorrason et al., 2004). Theory predicts that
stable and predictable recently colonized systems would favor foraging and habitat specialization and increase
the probability of eco-morphological diversification (Skilason et al., 1999; Snorrason et al., 2004; Van Kleunen
et al., 2005).

Phenotypic plasticity in temporally and spatially variable environments has been demonstrated repeatedly



within and among populations (Skilason et al., 2019). Whether niche expansion of a population is achieved by
a general increase in niche widths for all individuals overall or by an increase of among-individual variation
(i.e., expression of multiple individual specializations within a population) is a question in evolutionary
ecology that remains unanswered (Bolnick et al., 2003; Roughgarden, 1972; Svanbéck et al., 2012). Several
apparent generalist populations have been reported to be composed of combinations of specialized individuals
using several narrow niches that together yield an overall wide population niche (Aratjo et al., 2011; Aratjo et
al., 2008; Bolnick et al., 2003). Post-glacial lakes and co-inhabiting species offer a wide range of characteristics
that may favor or constrain individual specialization. Post-glacial lakes are depauperate ecosystems with low
interspecific competition, which provides ecological opportunities that likely favor niche expansion (Bolnick
et al., 2010; Costa et al., 2008; Parent et al., 2014). Additionally, the large flexibility within post-glacial
colonizing species, with individuals having the potential to exploit a wide range of resources, can facilitate
the evolution of individual resource specialization and population divergence. Yet, northern ecosystem food-
webs are subjected to strong seasonal and episodic influences of climate and the environment (McMeans et
al., 2015). Accordingly, using a broad resource spectrum has been identified as a useful strategy for fishes
living in Arctic environments, where food can be patchily distributed and ephemerally available. From all the
facets of niche use that are possible in northern lakes, understanding the magnitude and effect of individual
specialization in species and trophic positions is necessary to understand the role that variation among
individuals can play at the beginning of differentiation processes (Cloyed et al., 2016; De Ledn et al., 2012;
Svanbéck et al., 2015).

Great Bear Lake (Northwest Territories, Canada), straddling the Arctic Circle, provides an excellent oppor-
tunity to investigate the role of among-individual diet variation in diversification processes in post-glacial
lakes. Lake trout, Salvelinus namaycush, in this lake show a high degree of intraspecific diversity within a
geologically young system (8,000-10,000 yr BP; Johnson, 1975; Pielou, 2008). Specifically, extensive sympa-
tric divergence has occurred for this species with four ecotypes inhabiting the shallow-water ([?] 30 m) zone
of Great Bear Lake (Fig. Al; Chavarie et al., 2016a; Chavarie et al., 2015; Chavarie et al., 2013; Harris et
al., 2015). Three of these four shallow-water lake trout ecotypes are described as trophic generalists with
differing degrees of omnivory along a weak benthic-pelagic gradient (Chavarie et al., 2016a; Chavarie et al.,
2016b). Despite habitat and dietary overlap, significant differences in morphological, genetic, and life-history
variation have been reported (Chavarie et al., 2016 ; Chavarie et al., 2013; Harris et al., 2015). The sug-
gested resource use among the three ecotypes could be caused by the combination of individual specialists
along a resource continuum (Chavarie et al., 2016b). In other words, although ecotype resource use may
appear similar, individuals within an ecotype may differ in their resource use. One of these three generalist
ecotypes (Ecotype 2; generalist with a tendency to consume more fish than other ecotypes, referred to here
as the piscivorous ecotype; Fig. 1) showed at least two different feeding strategies, benthic cannibalism and
interspecific piscivory in the pelagic zone (Chavarie et al., 2016¢).

To characterize niche use and individual variation within an ecotype in relation to observed differentiation
of feeding strategies, we focused this study solely on the piscivorous lake trout ecotype. Fatty acid analysis
assumes that dietary lipids are broken down into their constituent fatty acids and incorporated relatively
unchanged into consumer tissues (Howell et al., 2003; Iverson, 2009; Iverson et al., 2004), allowing spatial and
temporal diet comparison among individuals (Duerksen et al., 2014; Eloranta et al., 2011; Hoffmann, 2017;
Iverson, 2009; Scharnweber et al., 2016). Fatty acids have been assessed to be a robust tool to characterize
lake trout diets (Happel et al., 2017; Happel et al., 2016; Iverson, 2009). Thus, fatty acids were used as
trophic bio-indicators to better understand dietary patterns of piscivorous lake trout and investigate whether
variation occurred among individuals in this ecotype and if individual specialization may be contributing to
the trophic breadth of the ecotype. Specifically, our aims were to 1) compare resource use among lake trout
individuals within Ecotype 2 (piscivores) by characterizing their fatty acids profiles, 2) determine whether
resource-use differences were influenced by life-history traits (e.g., size and age), 3) characterize and compare
morphological variation among groups that expressed different feeding strategies, and 4) determine if genetic
differences existed among groups. In addition, we examined a sub-set of large lake trout of this ecotype
from our collections (> 900 mm in fork length) referred to locally as “Giants” (Fig. 1), to determine if



they showed any ecological and genetic differences from others of this ecotype. These exceptionally large
individuals comprise < 1% of the lake trout population sampled in Great Bear Lake, and are among the
largest lake trout in the world (Chavarie et al., 2016 ). Except for their large body-size, these individuals
show no major morphological or spatial and temporal distribution differences relative to other co-occurring
piscivorous lake trout.

Methods
Study area and field sampling

Great Bear Lake is an oligotrophic Arctic freshwater system, 250 km south of the Arctic Ocean, in Northwest
Territories, Canada (N66deg 06’ W120deg 35’) (Johnson, 1975). As the world’s ninth largest and 19*" deepest
lake, the lake has a complex, multi-armed surface area of 31,790 km? and a maximum depth of 446 m (mean
depth = 90 m). Great Bear Lake was formed by scouring from the Laurentide ice-sheet during the Pleistocene
and was originally part of glacial Lake McConnell 8,000-10,000 yr BP (Johnson, 1975; Pielou, 2008). The
lake has characteristics typical of an arctic lake: ultra-oligotrophic, short ice-free season, and a simple food
web supporting only 15 fish species (Alfonso, 2004; Johnson, 1975; MacDonald et al., 2004). Great Bear
Lake lacks a commercial fishery but plays an important role in the local economy, supporting a fly-in sport
fishery for tourists and a subsistence fishery for the small Sahtu community of Deline. Great Bear Lake has
considerable intraspecific diversity within lake trout, lake whitefish (Coregonus clupeaformis ), and cisco (C.
artedi ) (Chavarie et al., 2013; Howland et al., 2013).

Piscivorous lake trout were caught at depths [?] 30 m using paired bottom sets (ca. 24 h) of 140-mm
and multi-mesh (38-140 mm) stretched-mesh gill nets from late-July through August over multiple years
(2002—2011) among all five arms of the lake (Chavarie et al., 2016b; Chavarie et al., 2015; Chavarie et al.,
2013). During 2012-2014, multi-mesh gill nets (38 to 140 mm), with a typical soak time of 24 hours, were
distributed across random depth-stratified sites (0-150 m) among Keith, McVicar, and McTavish arms (Table
A1l). Compared to the other ecotypes, piscivores have a streamlined body, large gape, and high growth rates
throughout life, similar to other piscivores (Chavarie et al., 2016 ; Chavarie et al., 2013). The piscivorous

ecotype also displayed a modest level of genetic differentiation from the three other ecotypes (Harris et al.,
2015).

We focused on adult trout due to the difficulty of classifying juveniles into ecotypes (Chavarie et al., 2013;
Zimmerman et al., 2006; Zimmerman et al., 2007) and to avoid the confounding effects of ontogenetic shifts
in morphology and diet. Of 79 fish analyzed herein, 35 piscivourous lake trout (Ecotype 2) were previously
analyzed for fatty acids by Chavarie et al. (2016b) and 44 fish were new additions to the diet analyses
presented here. Fish were selected from collections analyzed morphologically by Chavarie et al. (2015) to
include a range of sizes and ages within the piscivorous ecotype. For analyses invloving giant individuals,
we selected lake trout with fork lengths > 900 mm.

A left lateral full-body digital image was taken for each lake trout caught according to the procedures in Muir
et al. (2012). Measurements, tissues, and structures were sampled to determine biological characteristics
related to life-history, including otoliths, fork length, round weight, sex, and stage of maturity (i.e., immature,
current year spawner, or resting) (Chavarie et al., 2016 ; Chavarie et al., 2013). A dorsal muscle sample was
collected and frozen at -200C for fatty acid analysis (Budge et al., 2006; Kavanagh et al., 2010; Loseto et
al., 2009) and tissue from pectoral fins was collected and preserved in 95% ethanol for genetic analyses.

Fatty Acids

Analysis of 41 dietary fatty acids was carried out using procedures described by Chavarie et al. (2016b)
(Table 1). Muscle samples were freeze-dried and subsequently homogenized with a mortar and pestle. Lipids
were extracted overnight from 1 g of the homogenate in a 2:1 chloroform-methanol solution containing
0.01% BHT (v/v/w) at -200C (Folch et al., 1957). After extraction, samples were filtered through Whatman
Grade 1 Qualitative filter paper and the filter paper/sample was rinsed twice with 2 ml of the 2:1 chloro-
form:methanol. Sample extract was collected in a test tube and 7 ml of 0.88 N NaCl solution was added



to encourage fatty acids to move into the organic (chloroform) layer. The aqueous layer was discarded after
which the chloroform was dried with sodium sulfate prior to total lipid measurement. The extracted lipid was
used to prepare fatty acid methyl esters (FAME) by transesterification with Hilditch reagent (0.5 N HySO4
in methanol) (Morrison et al., 1964). Samples were heated for 1 h at 100 degC. Gas chromatographic (GC)
analysis was performed on an Agilent Technologies 7890N GC equipped with a 30 m J&W DB-23 column
(0.25 mm I.D; 0.15 ym film thickness). The GC was coupled to a Flame Ionization Detector operating at
350°C. Hydrogen was used as carrier gas flowing at 1.25 ml/min for 14 minutes, and increased to 2.5 ml/min
for 5 min. The split/splitless injector was heated to 260 °C and run in splitless mode. The oven program
was as follows: 60°C for 0.66 min, increasing by 22.82°C/min to 165 °C with a 1.97 min hold; increasing
by 4.56 °C/min to 174°C and by 7.61 °C/min to 200°C with a six min hold. Peak areas were quantified
using Agilent Technologies ChemStation software. Fatty acids standards were obtained from Supelco (37
component FAME mix) and Nuchek (54 component mix GLC-463).

All fatty acid values were converted to a mass percentage of the total array, and were named according the
TUPAC nomenclature as X:Y n-z, where X is the number of carbon atoms in the fatty acids, Y is the number of
methylene-interrupted double bonds in the chain, and n-z denotes the position of the last double bond relative
to the methyl terminus (Ronconi et al., 2010). Fatty acids suggested by Iverson et al. (2004) as important
dietary fatty acids, which transfer from prey to predator, were used in our analyses. Fatty acids profiles (%
of fatty acids) were transformed using arcsin square-root function. Fatty acids groups were identified using a
multivariate analysis R Package (Team, 2017), FactoMineR, using a hierarchical clustering analysis based on
principal components (Husson et al., 2012). To reduce the number of variables used, A SIMPER (similarity
percentage routine) was used to assess which fatty acids were primarily responsible for observed differences
among groups (King et al., 1999). A principal components analysis (PCA) was performed on the fatty acid
profiles with PC-ORD version 6 (McCune et al., 2011) among piscivorous groups to provide inferences about
patterns of resource use as defined by Chavarie et al. (2016b). Two-way Permutational Multivariate Analysis
of Variance (PERMANOVA), a non-parametric analog of Multivariate analysis of variance (MANOVA), was
used to test for differences in fatty acid composition among the groups identified by FactoMineR and among
arms (i.e., to investigate any spatial variations within the piscivorous ecotype). Two-way PERMANOVA
were performed in PAST 3 (Hammer et al., 2001) using 9999 permutations. Pairwise post-hoc comparison
(Bonferroni corrected) followed to test differences among groups defined by FactoMineR and among arms.
Pairwise post-hoc comparison (Bonferroni corrected) also followed to test differences among arms (i.e., spatial
variation). Finally, the fatty acid groups determined by FactoMineR were tested for differences in depth of
capture using one-way analysis of similarities (ANOSIM) with 9999 permutations using PAST 3.

Life-history

To determine if fatty acid groups differed in size-at-age, length vs. age was modeled using the Von Bertalanffy
length-age model fit to length at age-of-capture of individual fish (Quinn et al., 1999):

The length-age model describes length L; at age-of-capture ¢ as a function of theoretical maximum length
(L) = mm), instantaneous rate at whichL; approaches Ly (K= 1/year), theoretical age-at-zero length ( ¢
= years), and multiplicative error (€ ). Model parameters,Ls; , K , and t o, and associated standard errors
were estimated using nonlinear regression. Residual sums-of-squares were compared between a full model
(separate models for each group) to a reduced model (a single model for all groups) in a likelihood-ratio test
(Hosmer Jr et al., 2000). If the likelihood-ratio test was significant (P <0.05), we concluded that growth
differed among groups identified by fatty acids. If the likelihood-ratio test was not significant (P> 0.05),
we concluded that growth did not differ among groups. The same test was repeated for each pair of groups,
with and without giant individuals (fork length [?]900 mm) included in each group, to isolate the influence of
this subset in our size-at-age comparison due to the prevalence of giants in one of the groups (see Results).

Genetic analyses

To determine if genetic differences existed among individuals expressing different feeding strategies, the 79
lake trout classified by fatty acid composition into four groups were genotyped to determine genetic variation



and structure within and among groups. To allow a sample size sufficient for making a genetic comparison of
giants to the other dietary groups, 22 additional individuals determined non-randomly by their size ([?] 900
mm ; giant sub-set) from the 2002-2015 collections were added to giants processed for fatty acids, for a total
of 39 giants. Lake trout DNA was extracted from pectoral fin tissue preserved in ethanol using DNEasy
extraction kits (Qiagen Inc., Valencia, CA) following manufacturer protocols. Piscivorous groups were
assayed using a suite of 23 putatively neutral microsatellite markers amplified in four multiplexes previously
described in Harris et al. (2015). Amplified microsatellite fragments were analyzed using an automated
sequencer (ABI 3130x] Genetic Analyzer; Applied Biosystems, Foster City, CA). The LIZ 600 size standard
was incorporated for allele base-size determination. All genotypes were scored using GeneMapper software
ver. 4.0 (Applied Biosystems) and then manually inspected to ensure accuracy.

The program MICROCHECKER ver. 2.2.0.3 (Van Oosterhout et al., 2004) was used to identify genotyping
errors, specifically null alleles and large allele dropout. Observed and expected heterozygosity (Hgand H o)
were calculated using GENEPOP ver. 4.2 (Rousset, 2008). The program HP-RARE ver. 1.1 (Kalinowski,
2005) was used to determine the number of alleles, allelic richness, and private allelic richness for each group,
sampling 22 genes in each sample. Tests of departure from Hardy-Weinberg equilibrium and genotypic linkage
disequilibrium within each sample (i.e., for each fatty acid grouping and the Giant subset) were conducted
in GENEPOP using default values for both. Results from all tests were compared with an adjusted alpha
(o = 0.05) following the False Discovery Rate procedure (Narum, 2006).

We used the POWSIM V. 4.1 analysis to assess the statistical power of our microsatellite data set given
the observed allelic frequencies within our samples in detecting significant genetic differentiation between
sampling groups (Ryman et al., 2006). For POWSIM analyses, we assumed that lake trout within our
study diverged from a common baseline population with the same allelic frequencies as observed in our
contemporary samples. Simulations were performed with an effective population size of 5000 to yield values
of Fgr of 0.01, 0.005 and 0.001. The significance of tests in POWSIM were evaluated using Fisher’s exact
test and the y2 test and the statistical power was determined as the proportion of simulations for which
these tests showed a significant deviation from zero. All simulations were performed with 1000 iterations.

Genetic structuring was tested among lake trout groups using several different methods. First, genotypic
differentiation among lake trout groups was calculated using log-likelihood (G) based exact tests (Goudet
et al., 1996) implemented in GENEPOP. Global Fgr (9) (Weir et al., 1984) was calculated in FSTAT ver.
2.9.3 (Goudet, 1995) and pairwise comparisons of Fgr between groups were calculated in ARLEQUIN ver.
3.5 (Excoffier et al., 2005) using 10,000 permutations. We then employed the Bayesian clustering program
STRUCTURE V. 2.3.2 (Pritchard et al., 2000) to resolve the putative number of populations (i.e., genetic
clusters (K)) within our samples. Owing to the remarkably low levels of genetic differentiation among lake
trout in the Great Bear Lake (Harris et al., 2015; Harris et al., 2013), we employed the LOCPRIOR algorithm
(Hubisz et al., 2009). The LOCPRIOR algorithm considered the location/sampling information as a prior in
the model, which may perform better than the traditional STRUCTURE model when the genetic structure
is weak (Hubisz et al., 2009). We also incorporated an admixture model with correlated allelic frequencies
and the model was run with a burn-in period of 500,000 iterations and 500,000 Markov chain Monte Carlo
iterations. We varied the potential number of populations (K) from 1 to 10 and we ran 20 iterations for each
value of K. The STUCTURE output was first processed in the program STRUCTURE HARVESTER (Earl,
2012), followed by the combination of results of independent runs of the program and compilation of results
based on InP(D) and the post hoc AK statistic of Evanno et al. (2005), to infer the most likely number
of clusters. The best alignment of replicate runs was assessed with CLUMPP V. 1.1 (Jakobsson et al.,
2007) and DISTRUCT V. 1.1 (Rosenberg, 2004) was then used to visualize the results. For STRUCTURE
analyses, we reported both InP(D) and the post hoc AK statistic.

Finally, Discriminant Analysis of Principal Components (DAPC) (Jombart et al., 2010) was implemented
in the Adegenet package (Jombart, 2008) in R (Team, 2015). The number of clusters was identified using
thefind.clusters function (a sequential K-means clustering algorithm) and subsequent Bayesian Information
Criterion (BIC), as suggested by Jombart et al. (2010). Stratified cross-validation (carried out with the



function zwvalDapc ) was used to determine the optimal number of principal components to retain in the
analysis.

Morphology

Morphological variation was quantified for the 79 lake trout and used to compare fatty acid groupings
(different feeding strategies) identified within the piscivorous ecotype. Twenty-three landmarks and 20
semi-landmarks, based on Chavarie et al. (2015), and fourteen linear measurements based on Muir et
al. (2014), were used to characterize body and head shape from digital images. The combination of
traditional and geometric ecotype metrics was used because relationships of phenotype morphology with
foraging (e.g., jaw size) and swimming (e.g., fin lengths and caudal peduncle depth) (Kahilainen et al.,
2004; Kristjansson et al., 2002; Webb, 1984). Landmarks and semi-landmarks were digitized in x and y
coordinates using TPSDig2 software (http://life.bio.sunysb.edu/ecotype). Subsequently, digitized landmarks
and semi-landmarks were processed in a series of Integrated Morphometrics Programs (IMP) version 8
(http://www2.canisius.edu/;sheets/ecotypesoft), using partial warp scores, which are thin-plate spline coef-
ficients. Morphological methods and programs are described in Zelditch et al. (2012) and specific procedures
were described in further detail by Chavarie et al. (2013). All morphological measurements were size-free,
using centroid sizes or residuals from regressions on standard length (Zelditch et al., 2012).

Canonical Variate Analyses (CVA) were conducted on all morphological data, including body shape, head
shape, and linear measurements, to determine relationships among fatty acid groups. Body and head shape
were analysed using CVAGen8 from the IMP software (Zelditch et al., 2012) and for linear measurements,
CVA was analyzed with SYSTAT (Systat Software Inc., Chicago, IL, USA). Single Factor Permutation
MANOVA with 10 000 permutations tested for differences among groups and determined the percentage
of variation explained for a grouping if a CVA was significant. For linear measurements, a Bonferroni-
corrected post-hoc test followed MANOVA to identify measurements that differed among group. Principal
component analyses (PCA) were performed on body- and head-shape data using PCAGen8 (IMP software)
among groups to visualize morphological variation within the dataset. PC-ORD version 6 software (McCune
et al., 2011) was used to perform a PCA on the linear measurements.

Results
Fatty acids

On the basis of fatty acid composition, piscivorous lake trout were divided along a resource use axis into
four groups (1-4; Fig. A2), containing 14, 16, 21, and 28 individuals, respectively (Figs. 2 and A2; Table
1). Average dissimilarity was 14.61 (SIMPER analysis); whereas, the most discriminating 26 fatty acids,
explaining together "89% of the separation among groups, were: 22:6n-3 (12.5 %), 18:1n-9 (10.8 %), 16:1n-7
(6.8 %), 20:5n-3 (5.0 %), 20:4n-6 (3.9 %), 18:2n-6 (3.8 %), 22:4n-3 (3.7 %), 16:0 (3.5%), 20:4n-3 (3.3%),
18:1n7 (3.3%), 20:2n-6 (3.1%), 14:0 (2.8%), 20:1n-9 (2.7%), 22:5n-6 (2.7%), 20:3n-3 (2.3%), 22:2n-6 (2.1%),
18:0 (2.0%), 18:3n-3 (1.9%), 18:4n-3 (1.8%), 22:4n-6 (1.7%), 20:1n-7 (1.5%), 22:5n-3 (1.4%), 21:5n-3 (1.3%),
22:1n-11 (1.2%), 20:0 (1.2%), 16:4n-3 (1.2%), and 16:2n-4 (1.1%) (Table 1). The first two axes of the fatty
acids PCA explained 65.2 % of the variation in diet and the four groups were supported by PERMANOVA
(Fs76 = 23.9, P < 0.01) and pairwise comparisons between all pairs (all P < 0.01; Bonferroni corrected).
Spatial differences in fatty acids composition were found among arms (F476 = 3.2, P < 0.01). Pairwise
comparisons identified differences between Smith and McVicar arms (P = 0.02; Bonferroni corrected; Fig.
A3). Interaction between fatty acids groups and arms was not significant (p > 0.05). Finally, depth of capture
did not differ among fatty acid groups (p > 0.05). For all groups, most lake trout were caught between 0
and 20 m (Fig. A4).

Life-history

Overall, life history parameters did not differ among lake trout groups grouped by fatty acid composition,
including length-age models (Fig. 3;F ¢ ¢3 = 1.58; P = 0.141). With the giant sub-set included, growth
differed between only between Group 3 and Group 4 (F' 3, 41 = 3.958; P = 0.014), but not between any other



pairs (P > 0.1). Without Giants included (prevalence of Giants was higher in Group 3 than Group 1, Group
2, and Group 4), none of the pairs differed for length-at-age (P > 0.1), suggesting growth rate similarities
among groups.

Genetic differentiation

Piscivorous lake trout groups displayed little genetic differentiation, except for the Giant sub-set, which
differed slightly from other groups that were defined by fatty acids. MICROCHECKER identified two loci
(OtsG253b and Scol02) that contained null alleles. These loci, along with non-variable loci Sco218 and
SSOSL456, were removed, leaving 19 informative loci for subsequent analyses. Descriptive statistics of genetic
variation were similar among groups. The number of alleles per locus ranged from four (Smm21) to 41
(SnaMSU10) and averaged 28.75 across all loci. Averaged observed heterozygosity ranged from 0.78 (Giant)
to 0.83 (Group 1) while expected heterozygosity was 0.84 for all groups except Group 1 (0.85; Table 2).
Allelic richness ranged from 9.57 (Group 2 and 4) to 9.87 (Group 1), while expected private allelic richness
ranged from 0.87 (Group 3) to 1.08 (Group 2; Table 2). Only five of 95 tests (all of which involved different
loci) showed significant departures from Hardy-Weinberg equilibrium after adjustment for False Discovery
Rate (adjusted o = 0.01). Of those five, all were heterozygote deficits and three involved the Giant sub-set.
Only nine of 885 tests revealed significant linkage disequilibrium after adjusting for False Discovery Rate
(adjusted o = 0.0068). No locus-pair linkage disequilibrium combinations were consistently significant, but
seven of nine departures were in the Giant sub-set.

Using our microsatellite data set, the POWSIM analysis indicated a 100% power of detecting Fgr values as
low of 0.01 and 0.005. However, power was reduced to 77% when assessing genetic differentiation at a Fgr of
0.001. Overall, our microsatellite data set (including the number of loci, alleles per locus, and sample sizes)
had sufficient power to detect relatively low levels of genetic differentiation.

Global genetic differentiation was extremely low (9 = 0.001, 95% c.i. = -0.002-0.005) among the groups of
piscivorous lake trout. Pairwise Fgr ranged from -0.004 to 0.016 (Table 3); comparisons that included Giants
always differed the most from the other fatty acid groups, and they were involved in the only significant
pairwise comparisons (P < 0.05, Table 3). The Fgrvalues for the Giant vs. Groups 1 and 4 were generally
similar to genetic differentiation among the four original lake trout ecotypes in Great Bear Lake, except for
Ecotype 1 vs Ecotype 2 (Table 3). Bayesian clustering implemented in STRUCTURE provided evidence for
two genetic clusters when evaluating both InP(D) or AK (Table A2). The admixture plot based on K=2
showed no clear genetic structure between groups defined by fatty acid analysis; however, some differentiation
of the Giant sub-set from the fatty acid groups was observed (Fig. 4).

Finally, the Bayesian information criterion in the DAPC analysis (BIC = 185.42, Table A3, Fig. A5 A)
suggested that two clusters best explained genetic structure in our study (30 PCs retained as suggested by
the cross-validation procedure; Fig. A5 B). A compoplot (barplot showing the probabilities of assignment
of individuals to the different clusters) for K=2 revealed no clear genetic structure between two groups
identified by the DAPC analysis except for the Giant group, which appeared to have more individuals
assigned to cluster two (Fig. 4). Density plots of the discriminant function, however, suggested that the two
clusters identified through the DAPC analysis are mostly non-overlapping (Fig. A5 C).

Morphology

Morphological variation was low among the four dietary groups within the piscivorous ecotype. The first
canonical axis for body shape CVA was significant (P > 0.05), but head shape CVA revealed no significant
canonical axes (P > 0.05) in groupings (Fig. 5 a, b, ¢). MANOVAs for body and head shape were not signif-
icant (P > 0.05). Linear measurements CVA revealed one significant canonical axis (P > 0.05). MANOVA
permutation tests confirmed differences in linear measurements among groups (P = 0.047). Most distinctions
were related to linear measurements of heads, with upper and lower jaws, head depth, and snout-eye lengths
differing between Group 3 and Group 4 (P [?] 0.05), and head length differing between Group 1 and 4 (P =
0.03; Fig. 6). Caudal peduncle length and anal fin length differed marginally between Groups 2 vs 3 (P =
0.068) and Groups 1 vs 3 (P = 0.075), respectively. The first two PCA axes explained 44.3% and 12.3 % of



variation for body shape, 35.1% and 30.7 % of variation for head shape, and 39.6 % and 20.9 % for linear
measurements (Fig. 5 d, e, f).

Discussion

A common assumption in polyphenism is that partitioning and variability of resource use will occur predom-
inantly among ecotypes rather than within ecotypes. In contrast, homogeneity of resource use is anticipated
to occur within ecotypes, be spatially and temporally stable, and provide the selection opportunity for spe-
cialization (Amundsen et al., 2008; Knudsen et al., 2010; Svanbéck et al., 2004). However, this study provided
evidence that variation occurred within an ecotype due to diet specialization among individuals, possibly
a precursor to further population diversification via fine scale ecological selection (Richardson et al., 2014;
Vonlanthen et al., 2009).

Using fatty acids as dietary biomarkers, four distinct patterns of resource use were identified within the
piscivorous lake trout of Great Bear Lake (Fig. 2). Groups 3 and 4 had the most overlap and these groups
were characterized by C20 and C22 monounsaturates, biomarkers of a food web based on pelagic or deep-
water copepods (Ahlgren et al., 2009; Happel et al., 2017; Hoffmann, 2017; Loseto et al., 2009; Stowasser
et al., 2006). Specifically, 20:1n-9 is associated with calanoid copepods known to be particularly important
in northern pelagic food webs (Ahlgren et al., 2009; Budge et al., 2006; Kattner et al., 1998; Loseto et al.,
2009). High levels of 14:0, 18:3n-3 and 18:4n-3 fatty acids within groups 3 and 4 are also associated with
pelagic environments (Scharnweber et al., 2016; Tucker et al., 2008), although high levels of 18:2n-6 and
18:3n-3 have also been associated with terrestrial markers (Budge et al., 2001; Budge et al., 1998; Hoffmann,
2017).

Groups 1 and 2 were characterized by high concentrations of 16:4n-3, 20:4n-6 and 22:6n-3 found in diatom
and dinoflagellate-based food webs, respectively. The fatty acid 20:4n-6 reflects a benthic feeding strategy
(from benthic invertebrates to fish) (Stowasser et al., 2006; Tucker et al., 2008), whereas 22:6n-3 in pennate
diatoms (Iverson, 2009) and filter feeders links planktonic dinoflagellates to benthic filter-feeding bivalves in a
food web (Alfaro et al., 2006; Virtue et al., 2000). Relatively high concentrations of 16:0, 18:0 and 22:6n-3 and
low concentrations of 16:1n-7 supported the interpretation of carnivorous (or cannibalistic) dietary patterns
(Dalsgaard et al., 2003; Iverson, 2009; Iverson et al., 2004; Piché et al., 2010). Individuals positioned between
ends of principal components suggests a clinal pattern of resource use or habitat coupling (Vonlanthen et al.,
2009), where borders among groups are neither abrupt nor obvious as they are part of a continuum (Hendry
et al., 2009b). Overall, observed trophic patterns could reflect prey associated with different microhabitat
patches; however, the key assumption of disparity of prey associated with habitat heterogeneity (Skulason et
al., 1995; Svanbiick et al., 2005) may not be applicable to Great Bear Lake (Chavarie et al., 2016a; Chavarie
et al., 2020).

Sympatric divergence, in which barriers to gene flow are driven by selection between ecological niches, has
been implicated in the evolution of ecological and morphological variation in fishes (Chavarie et al., 2016d,;
Hendry et al., 2007; Preebel et al., 2013). Despite the limited ability of neutral microsatellite markers to
detect patterns of functional divergence (Berg et al., 2016; Lamichhaney et al., 2016; Roesti et al., 2015),
the significant genetic differentiation based on comparisons with Giant sub-set suggests some deviation from
panmixis within the piscivorous ecotype. Such a genetic pattern displayed by the Giant sub-set, despite a
lack of ecological discreteness, perhaps resulted from size-assortative mating and/or differences in timing and
location of spawning (Nagel et al., 1998; Rueger et al., 2016; Servedio et al., 2011). Great Bear Lake is not the
only lake in North America with an apparent divergence in lake trout body size; in Lake Mistassini, “Giant”
individuals also differed genetically from other lake trout groups (Marin et al., 2016). The similarity based on
lake trout body size between both lakes suggests analogous variables favoring partial reproductive isolation.
Although alternative causes of genetic differentiation may be possible, due to the short time since the onset
of divergence, post-zygotic isolation seems unlikely in this system (e.g., prezygotic isolation generally evolves
more rapidly Coyne et al., 2004) and we therefore favor assortative mating based on size and location as an
explanation for the low-level genetic divergence observed. Nonetheless, putative partial reproductive isolation
within an ecotype adds to the complexity of diversification and speciation processes potentially occurring



within lake trout in Great Bear Lake (Hendry, 2009; Nosil et al., 2009).

A central question arising from our analysis is what are the mechanisms behind these patterns of variation?
As individual specialization can result in dietary sub-groups and perhaps differences in habitat use among
sections of a population, such inter-individual variation within ecological sub-groups could substantially
influence processes of diversification (Aratdjo et al., 2008; Cloyed et al., 2016). Among-individual resource
specialization within an ecotype in a species-poor ecosystem like Great Bear Lake could reflect the diversifying
force of intraspecific competition, lack of constraining effects of interspecific competition, the abundance and
distribution of resources (e.g., temporal and spatial variation of resources), or some combination of these
variables (Bolnick et al., 2007; Cloyed et al., 2016). Multiple patterns of resource specialization within a
single ecotype, as we see for lake trout in Great Bear Lake, contrasts with the expected pattern of trophic
divergence among ecotypes and homogenization in habitat use or diet within an ecotype, a key assumption
guiding the development of functional ecological theory (Svanbiick et al., 2004; Violle et al., 2012). Expression
of intraspecific divergence through habitat and foraging specialization is thought to drive selection on traits
that enable more efficient use of resources (Schluter, 2000; Skulason et al., 1995; Snorrason et al., 2004).

In Great Bear Lake, multiple trophic generalists (which include the piscivores studied herein) coexist with
one specialist lake trout ecotype. This contrasts with the more commonly reported observation of multiple
specialist ecotypes (Chavarie et al., 2016a; Elmer, 2016; Kassen, 2002). A generalist population, however,
can be composed of several subsets of specialized individuals (Bolnick et al., 2009; Bolnick et al., 2007;
Bolnick et al., 2002). This broad distribution of trophic variation within a population appears to be the case
within the Great Bear Lake piscivores. The among-individual specialization may result, to some degree, from
variable use of spatially separated resources and possibly temporally variable resources, both of which could
be expected in a large northern lake (Fig. A4; Costa et al., 2008; Cusa et al., 2019; Quevedo et al., 2009).
Ecologically, among-individual resource specialization within an ecotype is another form of diversity (Aratdjo
et al., 2008; Bolnick et al., 2003; Pires et al., 2011). Such diversity may increase stability and persistence of
an ecotype within a system where energy resources are scarce and ephemeral (Cloyed et al., 2016; Pfennig
et al., 2012; Smith et al., 2011). Whether the level of among-individual specialization within this ecotype is
stable or not is a question that cannot be answered with our data.

Realized niche expansions are often linked to individuals of different morphologies and body sizes, with evi-
dence of efficiency trade-offs among different resources (Cloyed et al., 2016; Parent et al., 2014; Roughgarden,
1972; Svanbiick et al., 2004). When a resource gradient exists, niche expansion can be achieved via genetic
differentiation, phenotypic plasticity, or a combination of these processes (Bolnick et al., 2020; Parent et al.,
2014). The apparent segregation of resource use, based on our fatty acid analyses, despite a lack of major
morphological, body size, and genetic differentiation among the four dietary groups within the piscivorous
ecotype, suggests that behavioral plasticity is causing the observed patterns of dietary differentiation. Plasti-
city may promote diversification by expanding the range of phenotypes on which selection can act (Nonaka
et al., 2015; Pfennig et al., 2010; West-Eberhard, 2003). Theoretical models suggest that exploiting a wide
range of resources is either costly or limited by constraints, but plasticity is favored when 1) spatial and
temporal variation of resources are important, 2) dispersal is high, 3) environmental cues are reliable, 4) ge-
netic variation for plasticity is high and 5) cost/limits of plasticity are low (Ackermann et al., 2004; Hendry,
2016).

The expression of plasticity in response to ecological conditions (e.g., habitat structure, prey diversity) can
increase fitness. While most studies of diet variation focus on morphological differences among ecotypes in a
population, diet variation can also arise from behavioral, biochemical, cognitive, and social-rank differences
that cause functional ecology to be expressed at a finer scale than at the ecotype level (McGill et al., 2006;
Svanbick et al., 2005; Violle et al., 2012; Zhao et al., 2014). Indeed, behavioral plasticity likely has a temporal
evolutionary advantage due to relatively reduced reliance on ecologically beneficial morphological adaptation
(Smith et al., 2011; Svanbiick et al., 2009). The only detectable morphological differences among piscivorous
groups we identified in Great Bear Lake were associated with jaw lengths, snout-eye distance, and head
length and depth, which are strongly related to foraging opportunities (Adams et al., 2002; Susnik et al.,



2006; Wainwright et al., 2016). Some morphological characters likely express different degrees of plastic
responses (adaptive or not), and thus may be expressed differently depending on the magnitude and time of
exposure to heterogeneous environments (Hendry, 2016; Sharpe et al., 2008). For example, environmental
components (e.g., habitat structure) appear to have stronger and faster effects on linear characters (e.g.,
jaw length) than on body shape (Chavarie et al., 2015; Sharpe et al., 2008). Trophic level might also limit
the scope for morphological variation in lake trout because piscivory can limit diversification of feeding
morphology in fishes (Collar et al., 2009; Svanbiick et al., 2015).

Conclusion

Understanding ecological mechanisms of diversification is challenging (Ackermann et al., 2004). Divergence
occurs along a continuum and in early stages, such as in post-glacial lakes, morphological and dietary variati-
on may not always be features that are related (Bolnick et al., 2020; Bolnick et al., 2007). The debate around
diversification sequence, (which diverges first, behaviour, morphology, or ecology?) highlights the mosaic na-
ture of intraspecific variation (Hendry et al., 2009a). In this study, we asked whether among-individual diet
variation could be occurring within an ecotype by examining the fine-scale trophic variation of an early stage
of sympatric divergence of lake trout in Great Bear Lake (i.e., postglacial, representing ~350 generations;
Harris et al., 2015). Due to presumed homogeneity, few studies have investigated dietary patterns and grou-
pings within an ecotype. Thus, this study provides evidence that among-individual resource specialization
can occur within an ecotype. The co-existence of multiple generalist ecotypes in Great Bear Lake (Chavarie
et al., 2016a), combined with the individual specialization shown here in the piscivorous generalist ecotype,
expands our understanding of niche use and expansion, plasticity, individual specialization, and intraspecific
diversity in evolutionarily young populations.

Rapid divergence within relatively few generations and among-individual diet variation have both been
demonstrated to be a strong driver of population dynamics (Ashley et al., 2003; Bolnick et al., 2020; Fussmann
et al., 2007; Turcotte et al., 2011). In this study, the fine-grained trophic patterns shown within this ecotype
suggested that ecological drivers (i.e., spatial variation, habitat use, prey diversity, and abundance) could
have important effects on plasticity expression in early stages of divergence. Theory and experiments have
demonstrated that among-individual diet variation can increase stability within a system (Agashe, 2009).
Using a broad resource spectrum has been identified as an adaptive strategy for fishes living in Arctic
environments, where food availability is patchily distributed and ephemeral (Dill, 1983; Kassen, 2002; Smith
et al., 2011). Thus, it is no surprise that the trophic individual specialization within an ecotype was discovered
within a northern lake.

List of abbreviations:
BP = before present

m = meter

mm = millimeter

h = hour

ca. = around

i.e., = stands for

e.g., = for example

NaCl = Sodium Chloride
FAME = fatty acid methyl esters
H5SO,4 = Sulfuric acid

GC = Gas chromatographic

10



°C = degree Celsius

°C/min = degree Celsius/minutes

UPGMA = Unweighted Pair Group Method with Arithmetic Mean
PCA = principal component analysis

PERMANOVA = Permutational Multivariate Analysis of Variance
MANOVA = Multivariate analysis of variance
SIMPER= similarity percentage routine

ANOSIM = analysis of similarities

N =Number of individuals genotyped

N4 = number of alleles

H g=expected heterozygosity

H o = observed heterozygosity

A r= allelic richness

PA g = private allelic richness

A = alpha

FCA = Factorial correspondence analysis

k=number of alleles

DAPC = Discriminant Analysis of Principal Components
IMP = Integrated Ecotypeometrics Programs

CVA = Canonical Variate Analyses
Acknowledgements

We thank one anonymous reviewer and Alexandra Tyers for their insightful readings and constructive sug-
gestions. Déline Renewable Resources Council, Déline Lands and Finance Corporation, the community of
Déline, DFO in Hay River, and the Department of Environment and Natural Resources in Déline provided
valuable help with field planning and logistics. We especially thank J. Chavarie, S. Buckley, L. Harris, G.
Lafferty, M. Lindsey, M. Low, Z. Martin, S. Wiley, and C. Yukon, who helped lead sampling teams and coor-
dinate logistics. The following individuals who helped conduct field sampling in various years are gratefully
acknowledeged: J. Baptiste, D. Betsidea, D. Baton, L. Dueck, R. Eshenroder, G. Menacho, N. Modeste, I.
Neyelle, L. Neyelle, M. Smirle, A. Swietzer, C. Takazo, A. Vital, F. Vital, B. Yukon, M. Yukon, T. Yukon
and Charity, Cameron, and Cyre Yukon. D. Phillibert, K. Laubriat, S. Thacker, and K. Theoret conducted
isotopic lab work.

Declarations:

Authors’ contributions

LC, KH, WT, CK, and AM conceived and funded the study. LC and CG carried out the field work. LC, CG,
LH, and MH participated in the data analyses. LC wrote the manuscript. All authors read and approved
the final manuscript.

Competing interests

11



The authors declare that they have no competing interests.
Availability of data and materials

The datasets supporting the conclusions of this article are included within the article. Raw data will be
available on Dryad.

Consent to publish
Not applicable.
Ethics approval and consent to participate

We declare that our experiments were performed in the respect of ethical rules. This protocol was appro-
ved by Department of Fisheries and Ocean Canada, Freshwater Institute Animal Care Committee Science
Laboratories.

Funding

Funds are from Fisheries and Oceans Canada (DFO), Northern Development Canada Northwest Territories
Cumulative Impacts Monitoring Program grants, Polar Continental Shelf Program, Sahtu Renewable Re-
source Board, and the Great Lakes Fishery Commission. Funding bodies had no role in the study design, in
the collection, analysis and interpretation of data, in writing the manuscript or the decision to submit the
paper for publication.

Literature:

Ackermann, M., Doebeli, M., & Gomulkiewicz, R. (2004). Evolution of niche width and adaptive diversifi-
cation. Evolution, 58 (12), 2599-2612.

Adams, C. E., & Huntingford, F. A. (2002). The functional significance of inherited differences in feeding
morphology in a sympatric polymorphic population of Arctic charr. Evolutionary Ecology, 16 (1), 15-25.

Agashe, D. A. (2009). Consequences of intraspecific genetic variation for population dynamics and niche
expansion.

Ahlgren, G., Vrede, T., & Goedkoop, W. (2009). Fatty Acid Ratios in Freshwater Fish, Zooplankton and
Zoobenthos—Are There Specific Optima? In Lipids in aquatic ecosystems (pp. 147-178): Springer.

Alfaro, A. C., Thomas, F., Sergent, L., & Duxbury, M. (2006). Identification of trophic interactions within
an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes. Estuarine,
Coastal and Shelf Science, 70 (1), 271-286.

Alfonso, N. R. (2004). Evidence for two morphotypes of lake charr,Salvelinus namaycush , from Great Bear
Lake, Northwest Territories, Canada Environmental Biology of Fishes, 71 , 21-32.

Amundsen, P.-A., Knudsen, R., & Klemetsen, A. (2008). Seasonal and ontogenetic variations in resource use
by two sympatric Arctic charr morphs. Environmental Biology of Fishes, 83 (1), 45-55. doi:10.1007/s10641-
007-9262-1

Aratijo, M. S., Bolnick, D. I., & Layman, C. A. (2011). The ecological causes of individual specialisation.
Ecology Letters, 14 (9), 948-958. doi:10.1111/j.1461-0248.2011.01662.x

Aratjo, M. S., Guimaraes, P. R., Svanbéck, R., Pinheiro, A., Guimaraes, P., Reis, S. F. d., & Bolnick, D. I.
(2008). Network analysis reveals contrasting effects of intraspecific competition on individual vs. population
diets. Ecology, 89 (7), 1981-1993.

Ashley, M. V., Willson, M. F.; Pergams, O. R., O’'Dowd, D. J., Gende, S. M., & Brown, J. S. (2003).
Evolutionarily enlightened management. Biological Conservation, 111 (2), 115-123.

12



Berg, P. R., Star, B., Pampoulie, C., Sodeland, M., Barth, J. M. I., Knutsen, H., . . . Jentoft, S. (2016).
Three chromosomal rearrangements promote genomic divergence between migratory and stationary ecotypes
of Atlantic cod. Scientific Reports, 6 , 23246. doi:10.1038/srep23246

Bolnick, D. I., & Ballare, K. M. (2020). Resource diversity promotes among-individual diet variation, but
not genomic diversity, in lake stickleback. Ecology Letters, 23 (3), 495-505. doi:10.1111/ele.13448

Bolnick, D. I., Ingram, T., Stutz, W. E., Snowberg, L. K., Lau, O. L., & Paull, J. S. (2010). Ecological
release from interspecific competition leads to decoupled changes in population and individual niche width.
Proceedings of the Royal Society B: Biological Sciences, 277 (1689), 1789-1797. doi:10.1098 /rspb.2010.0018

Bolnick, D. L., & Paull, J. S. (2009). Morphological and dietary differences between individuals are weakly
but positively correlated within a population of threespine stickleback. Fuvolutionary Ecology Research, 11
(8), 1217-1233.

Bolnick, D. I., Svanbiick, R., Aratjo, M. S., & Persson, L. (2007). Comparative support for the niche variation
hypothesis that more generalized populations also are more heterogeneous. Proceedings of the National
Academy of Sciences, 104 (24), 10075-10079.

Bolnick, D. I., Svanbéck, R., Fordyce, J. A., Yang, L. H., Davis, J. M., Hulsey, C. D., & Forister, M. L. (2003).
The ecology of individuals: incidence and implications of individual specialization. American Naturalist, 161
(1), 1-28.

Bolnick, D. I., Yang, L. H., Fordyce, J. A., Davis, J. M., & Svanbick, R. (2002). Measuring individual-level
resource specialization. Ecology, 83 (10), 2936-2941. doi:10.1890,/0012-9658(2002)083[2936:MILRS]2.0.CO;2

Budge, S., Parrish, C., & Mckenzie, C. (2001). Fatty acid composition of phytoplankton, settling particulate
matter and sediments at a sheltered bivalve aquaculture site. Marine Chemistry, 76 (4), 285-303.

Budge, S. M., Iverson, S. J., & Koopman, H. N. (2006). Studying trophic ecology in marine ecosystems using
fatty acids: a primer on analysis and interpretation. Marine Mammal Science, 22 (4), 759-801.

Budge, S. M., & Parrish, C. C. (1998). Lipid biogeochemistry of plankton, settling matter and sediments in
Trinity Bay, Newfoundland. II. Fatty acids. Organic Geochemistry, 29 (5), 1547-1559.

Chavarie, L., Harford, W. J., Howland, K. L., Fitzsimons, J., Muir, A. M., Krueger, C. C., & Tonn, W.
M. (2016a). Multiple generalist morphs of Lake Trout: Avoiding constraints on the evolution of intraspecific
divergence? Fcology and Evolution, 6 , T727-7741.

Chavarie, L., Hoffmann, J., Muir, A. M., Krueger, C. C., Bronte, C. R., Howland, K. L., . . . Swanson,
H. K. (2020). Dietary versus nondietary fatty acid profiles of lake trout ecotypes from Lake Superior and
Great Bear Lake: Are fish really what they eat? Canadian Journal of Fisheries and Aquatic Sciences , 1-12.
doi:10.1139/cjfas-2019-0343

Chavarie, L., Howland, K., Gallagher, C., & Tonn, W. (2016b). Fatty acid signatures and stomach contents of
four sympatric Lake Trout: assessment of trophic patterns among morphotypes in Great Bear Lake. Ecology
of Freshwater Fish, 25 | 109-124. doi:10.1111/eff.12195

Chavarie, L., Howland, K., Gallagher, C., & Tonn, W. (2016¢). Fatty acid signatures and stomach contents of
four sympatric Lake Trout: assessment of trophic patterns among morphotypes in Great Bear Lake.Ecology
of Freshwater Fish, 25 (1), 109-124. doi:10.1111/eff.12195

Chavarie, L., Howland, K., Harris, L., & Tonn, W. (2015). Polymorphism in lake trout in Great Bear Lake:
intra-lake morphological diversification at two spatial scales. Biological Journal of the Linnean Society, 114
(1), 109-125.

Chavarie, L., Howland, K., Venturelli, P., Kissinger, B. C., Tallman, R., & Tonn, W. (2016 ). Life-history
variation among four shallow-water morphotypes of lake trout from Great Bear Lake, Canada. Journal of
Great Lakes Research , DOI:10.1016/j.jglr.2015.1007.1006. doi:doi:10.1016/j.jglr.2015.07.006

13



Chavarie, L., Howland, K. L., & Tonn, W. M. (2013). Sympatric polymorphism in lake trout: the coexistence
of multiple shallow-water morphotypes in Great Bear Lake. Transactions of the American Fisheries Society,
142 (3), 814-823. doi:10.1080/00028487.2013.763855

Chavarie, L., Muir, A. M., Zimmerman, M. S., Baillie, S. M., Hansen, M. J., Nate, N. A., . . . Krueger, C.
C. (2016d). Challenge to the model of lake charr evolution: shallow- and deep-water morphs exist within a
small postglacial lake. Biological Journal of the Linnean Society , n/a-n/a. doi:10.1111/bij.12913

Cloyed, C. S., & Eason, P. K. (2016). Different ecological conditions support individual specialization in
closely related, ecologically similar species. Fvolutionary Ecology, 30 (3), 379-400.

Collar, D. C., O’Meara, B. C., Wainwright, P. C., & Near, T. J. (2009). Piscivory Limits Diversification of
Feeding Morphology in Centrarchid Fishes. Evolution, 63 (6), 1557-1573.

Costa, G., xa, C, Mesquita, D., xa, O, . . . Editor: Monica, G. (2008). Niche Expansion and the Niche
Variation Hypothesis: Does the Degree of Individual Variation Increase in Depauperate Assemblages? The
American Naturalist, 172 (6), 868-877. doi:10.1086,/592998

Coyne, J. A., & Orr, H. A. (2004). Speciation (Vol. 37): Sinauer Associates Sunderland, MA.

Cusa, M., Berge, J., & Varpe, O. (2019). Seasonal shifts in feeding patterns: Individual and population
realized specialization in a high Arctic fish. Ecology and Evolution, 0 (0). doi:10.1002/ece3.5615

Dalsgaard, J., St. John, M., Kattner, G., Muller-Navarra, D., & Hagen, W. (2003). Fatty acid trophic
markers in the pelagic marine environment. In Advances in Marine Biology (Vol. 46, pp. 225-340): Academic
Press.

De Jong, G. (2005). Evolution of phenotypic plasticity: patterns of plasticity and the emergence of ecotypes.
New Phytologist, 166 (1), 101-118.

De Leon, L. F., Rolshausen, G., Bermingham, E., Podos, J., & Hendry, A. P. (2012). Individual specialization
and the seeds of adaptive radiation in Darwin’s finches. Fvolutionary Ecology Research, 14 (4), 365-380.

Dill, L. M. (1983). Adaptive flexibility in the foraging behavior of fishes. Canadian Journal of Fisheries and
Aquatic Sciences, 40 (4), 398-408.

Duerksen, S. W., Thiemann, G. W., Budge, S. M., Poulin, M., Niemi, A., & Michel, C. (2014). Large,
omega-3 rich, pelagic diatoms under Arctic sea ice: sources and implications for food webs. PloS one, 9
(12), €114070.

Earl, D. A. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE
output and implementing the Evanno method. Conservation genetics resources, 4 (2), 359-361.

Elmer, K. R. (2016). Genomic tools for new insights to variation, adaptation, and evolution in the salmonid
fishes: a perspective for charr. Hydrobiologia , DOI:10.1007/s10750-10015-12614-10755. doi:10.1007/s10750-
015-2614-5

Eloranta, A. P., Siwertsson, A., Knudsen, R., & Amundsen, P. A. (2011). Dietary plasticity of Arctic
charr (Salvelinus alpinus ) facilitates coexistence with competitively superior European whitefish ( Coregonus
lavaretus ). Ecology of Freshwater Fish, 20 (4), 558-568.

Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the
software STRUCTURE: a simulation study. Molecular Ecology, 14 (8), 2611-2620.

Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin (version 3.0): an integrated software package for
population genetics data analysis. Evolutionary bioinformatics, 1 , 47-50.

Folch, J., Lees, M., & Sloane-Stanley, G. (1957). A simple method for the isolation and purification of total
lipids from animal tissues.Journal of Biological Chemistry, 226 (1), 497-509.

14



Fussmann, G. F., Loreau, M., & Abrams, P. A. (2007). Eco-evolutionary dynamics of communities and
ecosystems. Functional Ecology, 21 (3), 465-477. doi:10.1111/j.1365-2435.2007.01275.x

Goudet, J. (1995). FSTAT (version 1.2): a computer program to calculate F-statistics. Journal of Heredity,
86 (6), 485-486.

Goudet, J., Raymond, M., de Meeus, T., & Rousset, F. (1996). Testing Differentiation in Diploid Populations.
Genetics, 144 (4), 1933.

Hammer, O., Harper, D.; & Ryan, P. (2001). Past: paleontological statistics software package for education
and data analysis. Palaeontologia Electronica, 4 , 1-9.

Handelsman, C. A., Broder, E. D., Dalton, C. M., Ruell, E. W., Myrick, C. A., Reznick, D. N., & Ghalambor,
C. K. (2013). Predator-induced phenotypic plasticity in metabolism and rate of growth: rapid adaptation
to a novel environment. Integrative and Comparative Biology, 53 (6), 975-988.

Happel, A., Jonas, J. L., McKenna, P., Rinchard, J., He, J. X., & Czesny, S. J. (2017). Spatial Vari-
ability of Lake Trout Diets in Lakes Huron and Michigan Revealed by Stomach Content and Fatty Acid
Profiles. Canadian Journal of Fisheries and Aquatic Sciences . doi:10.1139/cjfas-2016-0202

Happel, A., Stratton, L., Pattridge, R., Rinchard, J., & Czesny, S. (2016). Fatty-acid profiles of juvenile
lake trout reflect experimental diets consisting of natural prey. Freshwater Biology, 61 (9), 1466-1476.
doi:10.1111/fwb.12786

Harris, L. N., Chavarie, L., Bajno, R., Howland, K. L., Wiley, S. H., Tonn, W. M., & Taylor, E. B. (2015).
Evolution and origin of sympatric shallow-water morphotypes of Lake Trout, Salvelinus namaycush , in
Canada’s Great Bear Lake. Heredity, 114 (1), 94-106. doi:10.1038/hdy.2014.74

Harris, L. N., Howland, K. L., Kowalchuk, M. W., Bajno, R., Lindsay, M. M., & Taylor, E. B. (2013).
Microsatellite and mtDNA analysis of lake trout, Salvelinus namaycush, from Great Bear Lake, Northwest
Territories: impacts of historical and contemporary evolutionary forces on Arctic ecosystems. Ecology and
Evolution, 3 (1), 145-161. doi:10.1002/ece3.439

Hendry, A., Bolnick, D., Berner, D., & Peichel, C. (2009a). Along the speciation continuum in sticklebacks.
Journal of Fish Biology, 75 (8), 2000-2036.

Hendry, A. P. (2009). Ecological speciation! Or the lack thereof?This Perspective is based on the author’s
J.C. Stevenson Memorial Lecture delivered at the Canadian Conference for Fisheries Research in Hali-
fax, Nova Scotia, January 2008. Canadian Journal of Fisheries and Aquatic Sciences, 66 (8), 1383-1398.
doi:10.1139/F09-074

Hendry, A. P. (2016). Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics.
Journal of Heredity, 107 , 25-41.

Hendry, A. P., Bolnick, D. I., Berner, D., & Peichel, C. L. (2009b). Along the speciation continuum in
stickleback. Journal of Fish Biology, 75 . doi:10.1111/j.1095-8649.2009.02419.x

Hendry, A. P., Nosil, P., & Rieseberg, L. H. (2007). The speed of ecological speciation. Functional Ecology,
21 (3), 455-464.

Hoffmann, J. M. (2017). Investigating trophic ecology and dietary niche overlap among morphs of Lake Trout
in Lake Superior. ( MS thesis), University of Waterloo,

Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2000). Model-building strategies and methods for
logistic regression. Applied Logistic Regression, Third Edition , 89-151.

Howell, K. L., Pond, D. W., Billett, D. S., & Tyler, P. A. (2003). Feeding ecology of deep-sea seastars
(Echinodermata: Asteroidea): a fatty-acid biomarker approach. Marine Ecology Progress Series, 255 |
193-206.

15



Howland, K. L., Gallagher, C., Boguski, D., Chavarie, L., Reist, J., Rosenburg, B., & Wiley, S. (2013).
Variation in morphology, life history and ecology of cisco in Great Bear Lake, Northwest Territories, Canada
. (2013/106). Sci. Advis. Sec. Res. Doc. .

Hubisz, M. J., Falush, D., Stephens, M., & Pritchard, J. K. (2009). Inferring weak population structure with
the assistance of sample group information. Molecular Ecology Resources, 9 (5), 1322-1332.

Husson, F., Josse, J., Le, S., & Mazet, J. (2012). FactoMineR: Multivariate Exploratory Data Analysis and
Data Mining with R. . R package version 1.18 .

Iverson, S. J. (2009). Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative
determination. In Lipids in Aquatic Ecosystems (pp. 281-308): Springer.

Iverson, S. J., Field, C., Bowen, W. D., & Blanchard, W. (2004). Quantitative fatty acid signature analysis:
a new method of estimating predator diets. EcologicalMonographs, 74 , 211-235.

Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: a cluster matching and permutation program for
dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23 (14),
1801-1806.

Johnson, L. (1975). Distribution of fish species in Great Bear Lake, Northwest Territories, with reference to

zooplankton, benthic invertebrates, and environmental conditions. Journal of the Fisheries Research Board
of Canada, 32 , 1989-2004.

Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics,
24 (11), 1403-1405.

Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: a new
method for the analysis of genetically structured populations. BMC' Genetics, 11 (1), 94.

Kahilainen, K., Malinen, T., Tuomaala, A., & Lehtonen, H. (2004). Diel and seasonal habitat and food
segregation of three sympatric Coregonus lavaretus forms in a subarctic lake. Journal of Fish Biology, 64
(2), 418-434.

Kalinowski, S. T. (2005). hp-rare 1.0: a computer program for performing rarefaction on measures of allelic
richness. Molecular Ecology Notes, 5 (1), 187-189.

Kassen, R. (2002). The experimental evolution of specialists, generalists, and the maintenance of diversity.
Journal of Evolutionary Biology, 15 (2), 173-190. doi:10.1046/j.1420-9101.2002.00377.x

Kattner, G., Hagen, W., Graeve, M., & Albers, C. (1998). Exceptional lipids and fatty acids in the pteropod
Clione limacina(Gastropoda) from both polar oceans. Marine Chemistry, 61 (3), 219-228.

Kavanagh, A. S., Cronin, M. A., Walton, M., & Rogan, E. (2010). Diet of the harbour seal (Phoca vitulina
vitulina ) in the west and south-west of Ireland. Journal of the Marine Biological Association of the United
Kingdom, 90 (08), 1517-1527.

King, J. R., & Jackson, D. A. (1999). Variable selection in large environmental data sets using principal
components analysis. Environmetrics, 10 (1), 67-77. doi:10.1002/(SICI)1099-095X(199901,/02)10:1<67::AID-
ENV336>3.0.C0O;2-0

Knudsen, R., Primicerio, R., Amundsen, P.-A., & Klemetsen, A. (2010). Temporal stability of in-
dividual feeding specialization may promote speciation. Journal of Animal Ecology, 79 (1), 161-168.
doi:10.1111/j.1365-2656.2009.01625.x

Kristjansson, B. K., Skulason, S., & Noakes, D. L. G. (2002). Morphological segregation of Ice-
landic threespine stickleback (Gasterosteus aculeatus L). Biological Journal of the Linnean Society, 76 .
doi:10.1046/j.1095-8312.2002.00063.x

16



Lamichhaney, S., Fan, G., Widemo, F., Gunnarsson, U., Thalmann, D. S., Hoeppner, M. P., . . . Andersson,
L. (2016). Structural genomic changes underlie alternative reproductive strategies in the ruft (Philomachus
pugnaz ). Nature Genetics, 48 (1), 84-88. doi:10.1038/ng.3430

http://www.nature.com/ng/journal/v48/n1/abs/ng.3430.html#supplementary-information

Loseto, L., Stern, G., Connelly, T., Deibel, D., Gemmill, B., Prokopowicz, A., . . . Ferguson, S. (2009).
Summer diet of beluga whales inferred by fatty acid analysis of the eastern Beaufort Sea food web. Journal
of Experimental Marine Biology and Ecology, 374 (1), 12-18.

MacDonald, D., Levy, D., Czarnecki, A., Low, G., & Richea, N. (2004). State of the aquatic knowledge of
Great Bear Lake watershed. Report to Indian and Northern Affairs Canada. Water Resources Division,
MacDonald Environmental Sciences, Nanaimo, British Columbia .

Marin, K., Coon, A., Carson, R., Debes, P. V., & Fraser, D. J. (2016). Striking Phenotypic Variation yet
Low Genetic Differentiation in Sympatric Lake Trout (Salvelinus namaycush ). PloS one, 11 (9), e0162325.
doi:10.1371/journal.pone.0162325

McCune, B., & Mefford, M. (2011). PC-ORD v. 6.255 beta. MjM Software. Gleneden Beach, Lincoln .

McGill, B. J., Enquist, B. J, Weiher, E., & Westoby, M. (2006). Rebuilding com-
munity ecology from functional traits. Trends in FEcology & FEwvolution, 21 (4), 178-185.
doi:http://dx.doi.org/10.1016/j.tree.2006.02.002

McMeans, B. C., McCann, K. S., Humphries; M., Rooney, N., & Fisk, A. T. (2015). Food
Web Structure in Temporally-Forced Ecosystems. Trends in Ecology € FEvolution, 30 (11), 662-672.
doi:https://doi.org/10.1016/j.tree.2015.09.001

Morrison, W. R., & Smith, L. M. (1964). Preparation of fatty acid methyl esters and dimethylacetals from
lipids with boron fluoride-methanol. Journal of Lipid Research, 5 (4), 600-608.

Muir, A. M., Bronte, C. R., Zimmerman, M. S., Quinlan, H. R., Glase, J. D., & Krueger, C. C. (2014).
Ecomorphological diversity of Lake CharrSalvelinus namaycush at Isle Royale, Lake Superior. Transactions
of the American Fisheries Society, 143 (4), 972-987.

Muir, A. M., Vecsei, P., & Krueger, C. C. (2012). A perspective on perspectives: a method toward reducing
variation in digital shape analysis. Transactions of the American Fisheries Society, 141 (4), 1161-1170.
doi:10.1080/00028487.2012.685823

Nagel, L., & Schluter, D. (1998). Body size, natural selection, and speciation in sticklebacks. FEwvolution ,
209-218.

Narum, S. R. (2006). Beyond Bonferroni: less conservative analyses for conservation genetics. Conservation
Genetics, 7 (5), 783-787.

Nonaka, E., Svanback, R., Thibert-Plante, X., Englund, G., & Brannstrom, A. (2015). Mechanisms by
Which Phenotypic Plasticity Affects Adaptive Divergence and Ecological Speciation. Am. Nat., 186 (5),
126-143.

Nosil, P., Harmon, L. J., & Seehausen, O. (2009). Ecological explanations for (incomplete) speciation.
Trends in Ecology & Evolution, 24 (3), 145-156.

Parent, C. E., Agashe, D., & Bolnick, D. I. (2014). Intraspecific competition reduces niche width in experi-
mental populations. Ecology and Evolution, 4 (20), 3978-3990.

Pfennig, D. W., & Pfennig, K. S. (2012). Evolution’s wedge: competition and the origins of diversity : Univ
of California Press.

17



Pfennig, D. W., Wund, M. A., Snell-Rood, E. C., Cruickshank, T., Schlichting, C. D., & Moczek, A. P.
(2010). Phenotypic plasticity’s impacts on diversification and speciation. Trends in Ecology & Evolution, 25
(8), 459-467.

Piche, J., Iverson, S. J., Parrish, F. A., & Dollar, R. (2010). Characterization of forage fish and invertebrates
in the northwestern Hawaiian Islands using fatty acid signatures: species and ecological groups. Marine
Ecology Progress Series, 418 , 1-15. doi:10.3354/meps08814

Pielou, E. C. (2008). After the ice age: the return of life to glaciated North America : University of Chicago
Press.

Pires, M. M., Guimaraes, P. R., Araujo, M. S., Giaretta, A. A., Costa, J. C. L., & dos Reis, S. F.
(2011). The nested assembly of individual-resource networks. Journal of Animal Ecology, 80 (4), 896-903.
doi:10.1111/j.1365-2656.2011.01818.x

Praebel, K., Knudsen, R., Siwertsson, A., Karhunen, M., Kahilainen, K. K., Ovaskainen, O., . . . Amundsen,
P. A. (2013). Ecological speciation in postglacial European whitefish: rapid adaptive radiations into the
littoral, pelagic, and profundal lake habitats. Ecology and Evolution, 3 (15), 4970-4986.

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus
genotype data. Genetics, 155 (2), 945-959.

Quevedo, M., Svanback, R., & Eklov, P. (2009). Intrapopulation niche partitioning in a generalist predator
limits food web connectivity. Ecology, 90 (8), 2263-2274. d0i:10.1890/07-1580.1

Quinn, T. J., II, & Deriso, R. B. (1999). Quantitative fish dynamics . New York: Oxford University Press.

Richardson, J. L., Urban, M. C., Bolnick, D. 1., & Skelly, D. K. (2014). Microgeographic adaptation and the
spatial scale of evolution. Trends in Ecology & FEvolution, 29 (3), 165-176.

Roesti, M., Kueng, B., Moser, D., & Berner, D. (2015). The genomics of ecological vicariance in threespine
stickleback fish. 6 , 8767. doi:10.1038 /ncomms9767

http://dharmasastra.live.cf.private.springer.com/articles/ncomms9767#supplementary-information

Ronconi, R., Koopman, H. N., McKinstry, C., Wong, S., & Westgate, A. J. (2010). Inter-annual variability
in diet of non-breeding pelagic seabirds Puffinus spp. at migratory staging areas: evidence from stable
isotopes and fatty acids. Marine Ecology Progress Series, 419 , 267-282.

Rosenberg, N. A. (2004). DISTRUCT: a program for the graphical display of population structure. Molecular
Ecology Notes, 4 (1), 137-138.

Roughgarden, J. (1972). Evolution of niche width. American Naturalist , 683-718.

Rousset, F. (2008). genepop’007: a complete re-implementation of the genepop software for Windows and
Linux. Molecular Ecology Resources, 8§ (1), 103-106.

Rueger, T., Gardiner, N. M., & Jones, G. P. (2016). Size matters: male and female mate choice leads to
size-assortative pairing in a coral reef cardinalfish. Behavioral Ecology, 27 (6), 1585-1591.

Ryman, N., & Palm, S. (2006). POWSIM: a computer program for assessing statistical power when testing
for genetic differentiation. Molecular Ecology Notes, 6 (3), 600-602.

Scharnweber, K., Strandberg, U., Karlsson, K., & Eklov, P. (2016). Decrease of Population Divergence in
Eurasian Perch (Perca fluviatilis) in Browning Waters: Role of Fatty Acids and Foraging Efficiency.PloS
one, 11 (9), e0162470.

Schluter, D. (2000). The ecology of adaptive radiation . Oxford: Oxford University Press.

18



Servedio, M. R., Doorn, G. S. V., Kopp, M., Frame, A. M., & Nosil, P. (2011). Magic
traits in speciation: ‘magic’ but not rare? Trends in FEcology & FEuvolution, 26 (8), 389-397.
doi:http://dx.doi.org/10.1016/j.tree.2011.04.005

Sharpe, D. M., Rasanen, K., Berner, D., & Hendry, A. P. (2008). Genetic and environmental contri-
butions to the morphology of lake and stream stickleback: implications for gene flow and reproductive
isolation. Evolutionary Ecology Research, 10 (6), 849-866.

Skulason, S., Parsons, K. J., Svanback, R., Rasanen, K., Ferguson, M. M., Adams, C. E., . . . Snorrason, S.
S. (2019). A way forward with eco evo devo: an extended theory of resource polymorphism with postglacial
fishes as model systems. Biological Reviews, 0 (0). doi:10.1111/brv.12534

Skulason, S., & Smith, T. B. (1995). Resource polymorphisms in vertebrates. Trends in Ecology € Evolution,
10 , 366-370.

Skulason, S., Snorrason, S. S.; & Jonsson, B. (1999). Sympatric morphs, populations and speciation in
freshwater fish with emphasis on arctic charr. In A. E. Magurran & R. M. May (Eds.), Evolution of biological
diversity (pp. 329). London: Oxford University Press.

Smith, J., Baumgartner, L., Suthers, I., & Taylor, M. (2011). Generalist niche, specialist strategy: the diet
of an Australian percichthyid. Journal of Fish Biology, 78 (4), 1183-1199.

Snorrason, S. S., & Skulason, S. (2004). Adaptive speciation in northern freshwater fishes. Adaptive specia-
tion. Cambridge University Press, Cambridge , 210-228.

Stowasser, G., Pierce, G. J., Moffat, C. F., Collins, M. A., & Forsythe, J. W. (2006). Experimental study
on the effect of diet on fatty acid and stable isotope profiles of the squid Lolliguncula brevis.Journal of
Ezxperimental Marine Biology and Ecology, 333 (1), 97-114.

Susnik, S., Knizhin, I., Snoj, A., & Weiss, S. (2006). Genetic and morphological characterization of a Lake
Ohrid endemic, Salmo (Acantholingua) ohridanus with a comparison to sympatric Salmo trutta.Journal of
Fish Biology, 68 (A), 2-23. doi:10.1111/j.0022-1112.2006.00902.x

Svanbick, R., & Bolnick, D. I. (2005). Intraspecific competition affects the strength of individual specializa-
tion: an optimal diet theory method. Fvolutionary Ecology Research, 7 (7), 993-1012.

Svanbick, R., & Bolnick, D. I. (2007). Intraspecific competition drives increased resource use diversity within
a natural population. Proceedings of the Royal Society of London B: Biological Sciences, 274 (1611), 839-844.

Svanbéck, R., Mario Pineda-Krch, a. M. D., Krch, M., Doebeli, M., Associate Editor: Claire de, M., &
Editor: Donald, L. D. (2009). Fluctuating Population Dynamics Promotes the Evolution of Phenotypic
Plasticity. American Naturalist, 174 (2), 176-189. doi:10.1086/600112

Svanback, R., & Persson, L. (2004). Individual diet specialization, niche width and population dynamics:
implications for trophic polymorphisms. Journal of Animal Ecology, 73 (5), 973-982.

Svanback, R., Quevedo, M., Olsson, J., & Eklov, P. (2015). Individuals in food webs: the relationships
between trophic position, omnivory and among-individual diet variation. Oecologia, 178 (1), 103-114.

Svanback, R., & Schluter, D. (2012). Niche specialization influences adaptive phenotypic plasticity in the
threespine stickleback. The American Naturalist, 180 (1), 50-59.

Team, R. C. (2015). R: a language and environment for statistical computing. Vienna, Austria; 2015. In.

Team, R. C. (2017). R: A language and environment for statistical computing. R Foundation for Statistical
Computing . Vienna, Austria.

Tucker, S., Bowen, W. D., & Iverson, S. J. (2008). Convergence of diet estimates derived from fatty acids
and stable isotopes within individual grey seals. Marine Ecology Progress Series, 354 , 267.

19



Turcotte, M. M., Reznick, D. N., & Hare, J. D. (2011). The impact of rapid evolution on population dynamics
in the wild: experimental test of eco-evolutionary dynamics. Ecology Letters, 14 (11), 1084-1092.

Van Kleunen, M., & Fischer, M. (2005). Constraints on the evolution of adaptive phenotypic plasticity in
plants. New Phytologist, 166 (1), 49-60.

Van Oosterhout, C., Hutchinson, W. F., Wills, D. P., & Shipley, P. (2004). MICRO-CHECKER: software for
identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4 (3), 535-538.

Violle, C., Enquist, B. J., McGill, B. J., Jiang, L., Albert, C. H., Hulshof, C., . . . Messier, J. (2012). The
return of the variance: intraspecific variability in community ecology. Trends in Ecology € FEvolution, 27
(4), 244-252.

Virtue, P., Mayzaud, P., Albessard, E., & Nichols, P. (2000). Use of fatty acids as dietary indicators in
northern krill, Meganyctiphanes norvegica , from northeastern Atlantic, Kattegat, and Mediterranean waters.
Canadian Journal of Fisheries and Aquatic Sciences, 57 (S3), 104-114.

Vonlanthen, P., Roy, D., Hudson, A. G., LargiadER, C. R., Bittner, D., & Seehausen, O. (2009). Divergence
along a steep ecological gradient in lake whitefish (Coregonus sp.). Journal of Evolutionary Biology, 22 (3),
498-514. doi:10.1111/j.1420-9101.2008.01670.x

Wainwright, P. C., & Price, S. A. (2016). The Impact of Organismal Innovation on Functional and Ecological
Diversification. Integrative and Comparative Biology, 56 (3), 479-488. d0i:10.1093/icb/icw081

Webb, P. W. (1984). Body form, locomotion and foraging in aquatic vertebrates. American Zoologist, 24
107-120.

Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure.
Evolution , 1358-1370.

West-Eberhard, M. J. (2003). Developmental plasticity and evolution : Oxford University Press.

Zelditch, M. L., Swiderski, D. L., & Sheets, H. D. (2012). Geometric morphometrics for biologists: a primer
: Academic Press.

Zhao, T., Villeger, S., Lek, S., & Cucherousset, J. (2014). High intraspecific variability in the functional
niche of a predator is associated with ontogenetic shift and individual specialization.Fcology and Evolution,
4 (24), 4649.

Zimmerman, M. S.; Krueger, C. C., & Eshenroder, R. L. (2006). Phenotypic diversity of lake trout in Great
Slave Lake: differences in morphology, buoyancy, and habitat depth. Transactions of the American Fisheries
Society, 135 , 1056-1067.

Zimmerman, M. S.; Krueger, C. C., & Eshenroder, R. L. (2007). Morphological and ecological differences
between shallow- and deep-water lake trout in Lake Mistassini, Quebec. Journal of Great Lakes Research,
33, 156-169.

Table 1. Mean composition (% +- SD) of 41 fatty acids for the four groups of piscivorous Lake Trout morph
identified from Great Bear Lake.

Fatty acids Group 1 Group 2 Group 3 Group 4

14:0 6.8+10 70x+1.0 92£10 99+11
16:0 281 £1.0 28.13+1.7 242+£17 261+£1.2
16:1n-7 159+37 101 +£20 195+£34 156 *2.1
16:2n-6 20+£05 24+06 2602 31+02
16:2n-4 26 £07 15+04 2709 23+04
17:0 27+£05 28+03 24+£04 28102
16:3n-4 1.5+07 14=£05 1.9 +£ 0.6 1.8 £0.9
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Fatty acids Group 1 Group 2 Group 3 Group 4

16:4n-3 2612 08+03 1.3+ 0.6 1.2+ 04
16:4n-1 1.6 £0.7 15+£08 09 £ 0.6 1.0 £ 0.6
18:0 142 +16 13.1 +£0.8 11.6 £ 0.7 11.7 £ 0.5
18:1n-9 206 +£41 185+£34 323£39 279+£35
18:1n-7 119+£24 95£1.0 139 +£1.2 125+ 0.8
18:2n-6 86+£15 92116 124 +12 129+ 1.0
18:2n-4 20£04 15402 21+£02 21402
18:3n-6 22+£038 1.5+ 04 25+£04 23+02
18:3n-4 22+£07 15+03 24+£04 2003
18:3n-3 6.6t14 6909 79+£06 8707
18:3n-1 1.2+£07 12£03 1.1 £ 0.3 1.5 £ 0.3
18:4n-3 35£07 40+1.2 49+£07 56 0.7
18:4n-1 1.3+£06 04+£05 09 £ 0.5 1.2 £ 0.6
20:0 21+£07 28+0.7 31+£06 28=+08
20:1n-11 1.7+£1.0 08=£0.5 1.9 £ 0.8 1.4+ 04
20:1n-9 6.0£14 42108 79£09 7109
20:1n-7 25+04 25+03 38+04 41+06
20:2n-9 0.8 £ 0.6 1.4 +£0.8 1.3+£04 12+£04
20:2n-6 3.8+£09 47+09 6.8+13 75+1.0
20:3n-6 34+£05 36+04 44+£05 40+04
20:4n-6 13.8 £ 1.7 142+ 1.3 101 £1.1 100 £ 1.2
20:3n-3 35+07 45+09 5.1 +£06 6.6 £0.7
20:4n-3 6.1 12 82+1.3 8.8 £ 1.1 10.8 £ 0.9
20:5n-3 18,0 £29 15.7£1.2 11.8 £21 122+ 1.8
22:1n-11 1.8+ 1.7 09=£05 1.0+£13 09=+04
22:1n-9 22+£05 24+04 33+£04 31+04
22:1n-7 1.2 £ 0.6 1.0 £ 0.5 1.1 £ 0.3 1.6 £0.4
22:2n-6 1.4 £0.5 1.7 £ 0.6 30£05 40+08
21:5n-3 09 £ 0.6 1.8 £ 0.6 22£0.6 1.6 £0.9
22:4n-6 0.2 £0.5 1.0+ 1.6 0.3 £0.6 1.6 £ 1.7
22:5n-6 7.6 £1.1 10.7+£14 7707 96=*14
22:4n-3 23+£09 42+13 51 £09 72£1.7
22:5n-3 104 £09 10.8 £ 0.6 104 £24 11.1 £0.7
22:6n-3 339 +56 389+43 231+£37 26347

Table 2. Number of individuals genotyped (N ), number of alleles (N4 ), expected heterozygosity (H g),
observed heterozygosity (H o), allelic richness (A r) and private allelic richness (PA g) within fatty acid
groups identified within a piscivorous morphotype of Lake Trout from Canada’s Great Bear Lake.

N Na Hg Ho Ar PAgr

Group 1 12 10.16 0.85 0.83 9.87 1.08
Group 2 16 11.26 0.84 0.82 9.57 0.99
Group 3 20 1232 0.84 0.81 9.70 0.87
Group 4 28 14.11 0.84 0.81 9.57 0.98
Giant 39 1595 0.84 0.78 9.69 1.05

Table 3. Pairwise Fgr based on variation at microsatellite loci among Lake Trout morphs from Harris et al.
(2015) and piscivorous fatty acids dietary groups from Great Bear Lake. Significant results are represented
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as follow: * values are significant at an initial o of 0.05 and ** values are significant at an o of 0.02 subsequent
False Discovery Rate adjustments for multiple comparisons.

Morph 1 Morph 2 Morph 3 Group 1 Group 2 Group 3 Group
Morph 1 Group 1
Morph 2 0.063** Group 2 0.003
Morph 3 0.004** 0.007** Group 3 0.001 -0.01
Morph 4 0.012%* 0.017** 0.009** Group 4 0.005 -0.004 -0.002
Giant 0.016** 0.001 -0.002 0.006**

List of Figures:

Fig. 1. Example of a piscivorous (64 cm) and a Giant (100 cm standard length) Lake Trout, respectively,
from Great Bear Lake (NT).

Fig. 2. Principal Components Analysis of fatty acids of 79 Lake Trout classified as the piscivorous morph from
Great Bear Lake, based on the most discriminating 26 fatty acids from SIMPER analysis, explaining together
“89% of the separation among groups. A) Vectors of individual fatty acids contributing to the positioning
of piscivorous individuals and the convex hull delimitating group’s position are shown. B) Individual Lake
Trout are represented as circle = Group 1, square = Group 2, triangle = Group 3, and diamond = Group 4.
To visualize their variation within and among groups, large symbols were used to depict individuals longer
than 900 mm fork length, which were identified as the Giant sub-set in this study. Groups were defined by
FactoMineR using fatty acids and they are outlined by convex hulls.

Fig. 3. Fork length (mm) at age (years) for four groups of piscivorous Lake Trout sampled from Great
Bear Lake in 2002-2015 (Group 1 = squares; Group 2 = circles; Group 3 = triangles; diamond = Group 4).
Large symbols depict Giants (FL > 900 mm) within each group. The von Bertalanffy length-age models are
depicted as a solid line (without Giants) and a dashed line (with Giants).

Fig. 4. Results of the Bayesian clustering analysis implemented in the program STRUCTURE (B) and
the compoplot of percent membership assignment revealed from the DAPC analysis (B) for piscivorous
Lake Trout from Great Bear Lake. Shown is the admixture coefficient/percent membership assignment plot
where each individual is represented as a vertical line partitioned into colored segments representative of an
individual’s fractional membership in any given cluster (K). The most likely number of genetic clusters was
two in both the STRUCTURE analysis (based on InP[D] and the [?]K statistic of Evanno et al. (2005)) and
DAPC analysis (based on the lowest BIC score and with 30 PCs retained).

Fig. 5. Canonical Variate Analyses (95% ellipses) and Principal Components Analysis of body shape (a,
d), head shape (b, e) and linear measurements (c, f), respectively, of piscivorous Lake Trout represented as:
square = Group 1, circle = Group 2, triangle = Group 3, and diamond = Group 4. The first two PCA
axes explained 44.3% and 12.3 % of variation for body shape, 35.1% and 30.7 % of variation for head shape,
and 39.6 % and 20.9 % for linear measurements (Fig. 6 d, e, f). To visualize their variation within and
among groups, individuals longer than 900 mm FL, which are considered the Giant sub-set in this study, are
depicted by larger symbols.

Fig. 6. Residuals of mean (£ 95%CI) size-standardized upper and lower jaw lengths, head depth and length,
and snout-eye length among piscivorous Lake Trout groups. Grouping symbols are as follows: square =
Group 1, circle = Group 2, triangle = Group 3, and diamond = Group 4.
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Table Al. Spatial and temporal information for the 79 Lake Trout classified as piscivorous morph from
Great Bear Lake and analyzed for fatty acids. Sample sizes are in brackets.

Sample information

Group 1 (14) Dease 2005 (1) Smith 2011 (1) Dease 2010 (1)
McTavish 2009 (6) McVicar 2008 (1) Smith 2006
(1)

Group 2 (16) Dease 2010 (4) Smith 2006 (1) Keith 2012 (2)

Smith 2011 (5) McTavish 2009 (1) McTavish 2014
(2) McVicar 2008 (1)

Group 3 (21) Dease 2005 (2) McVicar 2003 (2) Dease 2010 (3)
McVicar 2008 (2) Keith 2012 (3) McVicar 2013 (3)
McTavish 2004 (1) Smith 2006 (1) McTavish 2014
(2) Smith 2011 (2)

Group 4 (28) Dease 2005 (5) McTavish 2014 (1) Dease 2010 (2)
McVicar 2003 (2) Keith 2002 (4) McVicar 2008 (5)
Keith 2003 (4) Smith 2006 (1) MCTavish 2004 (2)
Smith 2011 (1) McTavish 2009 (1)
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Table A2. Bayesian clustering (i.e., STRUCTURE, Pritchard et al. 2000) results for piscivorous morphotypes
of lake trout from Great Bear Lake assessed using variation at 19 microsatellite markers. Shown are the mean
log-likelihood values (LnP[D]) for different hypothesized numbers of genetic populations (K) and the mean
value of AK statistic of Evanno et al. (2005). Bold values represent the most likely number of genetic groups
indicated by AK. Dashes = not applicable given that AK cannot be calculated for these values of K. For
all STRUCTURE analyses, we employed an admixture model with the LOCPRIOR algorithm, correlated
allelic frequencies, 100,000 burn-in and MCMC iterations and 10 iterations per K value were completed.

K Reps Mean LuP(D) Delta K
1 10 -10271.83 —

2 10 -10266.25 9.26
3 10 -10572.68 0.03
4 10 -10868.33 1.39
5 10 -10739.53 0.45
6 10 -10806.97 0.84
7 10 -10678.37 0.66
8 10 -10739.90 0.13
9 10 -10862.98 1.09
10 10 -10553.04 —

Table A3. Results of the discriminant analysis of principal components (DAPC, Jombart et al. 2010) im-
plemented in the Adegenet package (Jombart et al. 2008) to determine the most likely number of genetic
clusters (K) within the piscivorous Lake Trout form Great Bear Lake. The number of groups was identified
using the find.clusters function (a sequential K-means clustering algorithm) and subsequent Bayesian Infor-
mation Criterion (BIC), as suggested by Jombart et al. (2010). Stratified cross-validation carried out with
the function zvalDapc was employed to determine the optimal number of PCs to retain in the analysis.

=

BIC

185.98
185.42
185.89
186.51
187.40
189.10
190.64
191.99
193.61

0 195.67

= © 00 IO Uik Wi~

Table A4. Microsatellite loci used in this study and Fjsvalues for each group per locus.

Locus Group 1 Group 2 Group 3 Group 4 Giant
OtsG83b -0.021 0.017 0.046 0.090 -0.013
Sco215 0.061 0.042 -0.011 -0.029 0.071
Smm17 -0.433 -0.069 -0.038 -0.304 -0.012
Smm21 -0.143 -0.286 -0.266 0.023 0.028
SnaMSU1 0.012 -0.069 -0.024 -0.028 -0.074
SnaMSU8  -0.031 0.002 0.048 0.023 0.081
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Locus Group 1 Group 2 Group 3 Group 4 Giant
OMM1105 0.094 -0.075 -0.041 -0.098 -0.065
Smm?22 -0.014 0.055 0.082 -0.088 0.137
SnaMSU13 -0.105 0.053 0.136 -0.073 -0.049
SnaMSU5  0.088 0.065 -0.032 0.039 0.159
Scol9 -0.082 0.190 0.067 -0.009 0.051
Sco202 0.107 -0.166 0.047 0.115 -0.080
SnaMSU10 -0.108 -0.030 0.086 0.096 0.203
SnaMSU12 0.122 0.069 0.123 0.201 0.072
SnaMSU6  0.008 -0.090 0.002 0.007 0.207
Sal38 -0.056 0.121 -0.016 -0.012 0.041
Sco200 -0.015 0.098 -0.096 0.041 0.244
SnaMSU11 -0.060 -0.108 -0.012 0.083 -0.011
SnaMSU3  0.059 -0.019 0.065 0.012 0.085
Overall -0.027 -0.011 0.009 0.005 0.057

Fig. Al. The four shallow-water morphotypes of Lake Trout from Great Bear Lake identified in Chavarie et
al. (2013, 2015, 2016a, 2016b): the generalist, the piscivore, the benthic-oriented, and the pelagic specialist,

Morphs1-4, respectively.
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Fig. A2. Hierarchical clusters of Great Bear Lake Lake Trout fatty acids profiles overlaid on the first two
principal component axes (PCA) using FactoMineR.
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Fig. A3. Principal Component Analysis (PCA) of fatty acids of 79 Lake Trout classified as piscivorous
morph from Great Bear Lake, based on the proportions of 41 fatty acids in dorsal muscle tissue. Spatial
variations (5 arms; 1=Keith, 2=McVicar, 3=McTavish, 4=Dease, and 5=Smith) are represented, based on
the fatty acids profile of each lake trout analyzed in this study.

Fig. A4. Depth of capture for four groups of piscivorous Lake Trout from Great Bear Lake (Groups identified
by fatty acids profiles of individuals). Outliers are represented by a circle.
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Fig. A5. Summary of the DAPC analysis. (A) Results of the cross-validation analysis used to determine the
number of PCs to retain in the DAPC analysis. Cross-validation analysis determined the most appropriate
number of PCs retained was 30. (B) Inference of the number of clusters in the DAPC performed on piscivorous
Lake Trout from Great Bear Lake. The function find.clusters was run with a maximum number of clusters of
10 to identify the optimal number of clusters based on the BIC values. A K value of 2 (the lowest BIC value)
represents the best summary of the data (most probable number of (K)). (C) The results of the discriminant
function that shows that the two clusters are mostly non-overlapping.
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