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Abstract

Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low
death rate countries such as Eastern Asia, Central Europe or the Balkans have a common feature of eating large quantities of
fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage were associated with
low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin converting enzyme 2 (ACE2). As a
result of SARS-Cov-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT1R) axis associated with
oxidative stress. This leads to insulin resistance, lung and endothelial damage, two severe outcomes of COVID-19. The nuclear
factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block the AT1R axis. Cabbage
contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli,
which are also potent Nrf2 activators. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations
that may enhance Nrf2-associated antioxidant effects helpful in mitigating COVID-19 severity.

Abbreviations

ACE: Angiotensin converting enzyme
Ang II: Angiotensin 11

AT, R: Angiotensin II receptor type 1
COVID-19: Coronavirus 19 disease



GI: Gastro-intestinal

LAB: Lactic acid bacilli

NF-xB: Nuclear factor kappa B

Nrf2: Nuclear factor (erythroid-derived 2)-like 2

PEDV: Porcine epidemic diarrhea virus

ROS: Reactive oxygen species

SARS: Severe acute respiratory syndrome

SARS-Cov-2: Severe acute respiratory syndrome coronavirus 2
TGEV: Transmissible Gastroenteritis Coronavirus Infection
Introduction

A COVID-19 epidemic started in China and then disseminated to other Asian countries before becoming
a pandemic. There is a large variability across countries in both incidence and mortality, and most of the
current debates on COVID-19 focus on the differences between countries. German fatalities are strikingly
low as compared to many European countries. Among the several explanations proposed, an early and large
testing of the population was put forward ! as well as social distancing. However, little attention has been
given to regional within-country differences that may propose new hypotheses.

It would appear that the pandemic has so far resulted in proportionately fewer deaths in some Central
European countries, the Balkans, China, in most Eastern Asian countries as well as in many Sub-Saharan
African countries. Several reasons can explain this picture. One of them may be the type of diet in these
low mortality countries. 2

Diet has been proposed to mitigate COVID-19. 3 Some foods or supplements may have a benefit on the
immune response to respiratory viruses. However, to date, there are no specific data available to confirm the
putative benefits of diet supplementation, probiotics, and nutraceuticals in the current COVID-19 pandemic.*
News and social media platforms have implicated dietary supplements in the treatment and prevention of
COVID-19 without evidence. °

In this paper, we discuss country and regional differences in COVID-19 deaths. We attempt to find potential
links between foods and differences at the national or regional levels in the aim to propose a common
mechanism focusing on oxidative stress that may be relevant in COVID-19 mitigation strategies. We used
cabbage and fermented vegetable as a proof-of-concept.

Biases to be considered

According to the Johns Hopkins coronavirus resource center (https://coronavirus.jhu.edu ), one of the most
important ways of measuring the burden of COVID-19 is mortality. However, death rates are assessed
differently between countries and there are many biases that are almost impossible to assess. Using the rates
of COVID-19 confirmed cases is subject to limitations that are similar to or even worse than the differences
in the use of COVID-19 testing.

Differences in the mortality rates depend on health care systems, the reporting method and many unknown
factors. Countries throughout the world have reported very different case fatality ratios - the number of
deaths divided by the number of confirmed cases - but these numbers cannot be compared easily due to
biases. On the other hand, for many countries, the methodology used to report death rates in the different
regions is standardized across the country.

We used mortality per number of inhabitants to assess death rates, as proposed by the European Center for
Disease Prevention and Control (ecdc, https://www.ecdc.europa.eu/en), and to report trends with cutoffs
at 25, 50, 100 and 250 per million.



Our hypothesis is mostly based on ecological data that are hypothesis-generating and that require confirma-
tion by proper studies.

2- Multifactorial origin of the COVID-19 epidemic

Like most diseases, COVID-19 exhibits large geographical variations which frequently remain unexplained
6. The COVID-19 epidemic is multifactorial, and factors like climate, population density, age, phenotype
and prevalence of non-communicable diseases are also associated to increased incidence and mortality”. Diet
represents only one of the possible causes of the COVID-19 epidemic and its importance needs to be better
assessed. Some risk factors for the COVID-19 epidemics are proposed at the individual and country levels
in Table 1.

Ecological data on COVID-19 death rates

When comparing death rates, large differences exist between and within countries and the evolution of the
pandemic differs largely between countries (Figure 1). Although there are many pitfalls in analyzing death
rates for COVID-19, 2 the evolution of death rates between May 20 and July 18 shows a dramatic increase
in Latin America and only some increase in European countries, certain African countries, the Middle East,
India, Pakistan and some of the South East Asian countries. However, there is no change in the very low
death rates of Cambodia, China, Japan, Korea, Lao, Malaysia, Taiwan, Vietnam and of many Sub-Saharan
African countries, Australia and New Zealand. This geographical pattern is very unlikely to be totally due
to reporting differences between countries.

In some high death-rate countries such as Italy (Figure 2), variations are extremely large from 50 per
million in Calabria to over 1,600 in Lombardia. In Switzerland, the French- and Italian-speaking can-
tons have a far higher death rate than the German-speaking ones (Office fédéral de la santé publi-
que,Switzerlandhttps: //www.bag.admin.ch/bag/fr/home.html ) (Figure 3). It may be proposed that the high-
death rate cantons were contaminated by French and Italian people. However, the Mulhouse airport serves
the region of Basel (Switzerland), the Haut-Rhin department (France) and the region of Freiburg (Germany).
There was a COVID-19 outbreak in the Haut-Rhin department, in particular in Mulhouse and Colmar. The
death rate for COVID-19 (May 20, 2020) was 935 per million inhabitants in France but only 10 to 25 in
Switzerland and 7 in Germany. It is important to consider these regional differences since reporting of deaths
is similar within the country and many factors may be considered.

In many Western countries, large cities (e.g. London, Madrid, Milan, New York, Paris) have been the most
affected. This seems to be true also for many countries in which the rural areas have much fewer cases.

The number of deaths is relatively low in Sub-Saharan Africa compared to other regions, and the low
population density (which applies in rural areas but not in megacities such as Cairo or Lagos) or the
differences in health infrastructure are unlikely to be the only explanation.® It has been proposed that hot
temperature may reduce COVID-19, but, in Latin American countries, death rates are high (e.g. Brazil,
Ecuador, Peru and Mexico).

Is diet partly responsible for differences between and within countries?

Nutrition may play a role in the immune defense against COVID-19 and may explain some of the differences
seen in COVID-19 between and within countries 2. In this concept paper, raw and fermented cabbage were
proposed to be candidates.

To test the potential role of fermented foods in the COVID-19 mortality in Europe, an ecological study, the
European Food Safety Authority (EFSA) Comprehensive European Food Consumption Database, was used
to study the country consumption of fermented vegetables, pickled /marinated vegetables, fermented milk,
yoghurt and fermented sour milk.® Of all the variables considered, including confounders, only fermented
vegetables reached statistical significance with the COVID-19 death rate per country. For each g/day increase
in consumption of fermented vegetables of the country, the mortality risk for COVID-19 was found to decrease
by 35.4% (Figure 4).



A second ecological study has analyzed cruciferous vegetables (broccoli, cauliflower, head cabbage (white,
red and savoy cabbage), leafy brassica) and compared them with spinach, cucumber, courgette, lettuce and
tomato '°. Only head cabbage and cucumber reached statistical significance with the COVID-19 death rate
per country. For each g/day increase in the average national consumption of some of the vegetables (head
cabbage and cucumber), the mortality risk for COVID-19 decreased by a factor of 11, to 13.6 %. The negative
ecological association between COVID-19 mortality and consumption of cabbage and cucumber supports the
a priori hypothesis previously reported. However, these are ecological studies that need to be further tested.

Another diet component potentially relevant in COVID-19 mortality may be the food supply chain and
traditional groceries. 1! The impact of the long supply chain of food on health is measurable by an increase
in metabolic syndrome and insulin resistance.'? Therefore, areas that are more prone to short supply food
and traditional groceries may have been able to better tolerate COVID-19 with a lower death toll. These
considerations may be partly involved in the lower death rates of Southern Italy compared to the Northern
part (Figure 2).

Fermented foods, microbiome and lactobacilli

The fermentation process, born as a preservation method in the Neolithic age, enabled humans to eat not-so-
fresh food and to survive.!® Fermented foods are “foods or beverages made via controlled microbial growth
(including lactic acid bacteria (LAB)) and enzymatic conversions of food components.” 4 Not all fermented
foods contain live cultures, as some undergo further processing after fermentation: pasteurization, smoking,
baking, or filtration. These processes kill or remove the live microorganisms in foods such as soy sauces,
bread, most beers and wines as well as chocolate. Live cultures can be found in fermented vegetables and
fermented milk (fermented sour milk, yoghurt, probiotics, etc.).

Most traditional foods with live bacteria in the low-death rate countries are based on LAB fermentation 5. A
number of bacteria are involved in the fermentation of kimchi and other Korean traditional fermented foods,
but LAB - including Lactobacillus - are the dominant species in the fermentation process'®'?. Lactobacillus
is also an essential species in the fermentation of sauerkraut, Taiwanese!'®, Chinese '° or other fermented
foods 2°. Lactobacilli are among the most common microorganisms found in kefir, a traditional fermented
milk beverage?!, milk and milk products 2223, During fermentation, LAB synthesize vitamins and minerals,
and produce biologically-active peptides with anti-oxidant activity!'424-28,

Humans possess two protective layers of biodiversity, and the microbiome has been proposed as an important
actor of COVID-192. The environment (outer layer) affects our lifestyle, shaping the microbiome (inner

layer). 3*Many fermented foods contain living microorganisms and modulate the intestinal microbiome.
14,28,31-33

The composition of microbiomes varies in different regions of the world. 3* Gut microbiota has an inter-
individual variability due to genetic predisposition and diet. 3°As part of the gut microbiome, Lactobacillus
spp. contributes to its diversity and modulates oxidative stress in the GI tract. Some foods like cabbage can
be fermented by the gut microbiota.36

Urbanization in western countries was associated with changes in the gut microbiome and with intestinal
diversity reduction. 323740 Westernized food in Japan led to changes in the microbiome and in insulin
resistance.*! The gut microbiome of westernized urban Saudis had a lower biodiversity than that of the
traditional Bedouin population.*? Fast food consumption was characterized by reduced Lactobacilli in the
microbiome. 43

The links between gut microbiome, inflammation, obesity and insulin resistance are being observed but
further large studies are needed for a definite conclusion. 44-46

Some COVID-19 patients have intestinal microbial dysbiosis*” with decreased probiotics such as Lactobacillus
and Bifidobacterium *®. Many bacteria are involved in the fermentation of vegetables but most traditional
foods with live bacteria in the low-death rate countries are based on LAB fermentation. 15172027 Lactobacilli
are among the most common microorganisms found in milk and milk products?!-23.



Angiotensin-converting enzyme 2 (ACE2) and COVID-19

COVID-19 is more severe in older adults and/or patients with comorbidities, such as diabetes, obesity or
hypertension, suggesting a role for insulin resistance.*® Although differences exist between countries, the
same risk factors for severity were found globally, suggesting common mechanisms. A strong relationship
between hyperglycemia, impaired insulin pathway, and cardiovascular disease in type 2 diabetes is linked to
oxidative stress and inflammation.?® Lipid metabolism has an important role to play in obesity, in diabetes
and its multi-morbidities, and in ageing.®’ The increased severity of COVID-19 in diabetes, hypertension,
obese or elderly individuals may be related to insulin resistance, with oxidative stress as a common pathway.??
Moreover, the severe outcomes of COVID-19 - including lung damage, cytokine storm or endothelial damage
- appear to exist globally, again suggesting common mechanisms.

The angiotensin-converting enzyme 2 (ACE2) receptor is part of the dual system — the renin-angiotensin-
system (RAS) - consisting of an ACE-Angiotensin-II-AT R axis and an ACE-2-Angiotensin-(1-7)-Mas axis.
AT R is involved in most of the effects of Ang II, including oxidative stress generation,®® which in turn
upregulates AT R 4. In metabolic disorders and with older age, there is an upregulation of the AT|R axis
leading to pro-inflammatory, pro-fibrotic effects in the respiratory system, and to insulin resistance.’>SARS-
CoV-2 binds to its receptor ACE2 and exploits it for entry into the cell. The ACE2 downregulation, as a
result of SARS-CoV-2 binding, enhances the AT R axis ®¢ likely to be associated with insulin resistance 78
but also to severe outcomes of COVID-19 (Figure 5A).

Anti-oxidant activities of foods linked with COVID-19

Many foods have an antioxidant activity ®*-6* and the role of nutrition has been proposed to mitigate COVID-

1952, Many antioxidant mechanisms have been proposed, and several foods can interact with transcription
factors related to antioxidant effects such as the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2). 3 Some

processes like fermentation increase the antioxidant activity of milk, cereals, fruit, vegetables, meat and fish.
26

7-1- Nrf2, a central antioxidant system

Reactive oxygen species (ROS), such as hydrogen peroxide and superoxide anion, exert beneficial and toxic
effects on cellular functions. Nrf2 is a pleiotropic transcription factor at the centre of a complex regulatory
network that protects against oxidative stress and the expression of a wide array of genes involved in immunity
and inflammation, including antiviral actions.®® Nrf2 activity in response to chemical insults is regulated by
a thiol-rich protein named KEAP1 (Kelch-like ECH-associated protein 1). The KEAP1-Nrf2 system is the
body’s dominant defense mechanism against ROS.%Induction of the antioxidant responsive element and the
ROS mediated pathway by Nrf2 reduces the activity of nuclear factor kappa B (NF-xB), % whereas NF-xB
can modulate Nrf2 transcription and activity, having both positive and negative effects on the target gene
expression 66,

Natural compounds derived from plants, vegetables, fungi and micronutrients (e.g. curcumin, sulforaphane,
resveratrol and vitamin D) or physical exercise can activate Nrf2.57:58 However, sulforaphane is the most

potent activator of Nrf2.3:3% “Ancient foods”, and particularly those containing Lactobacillus, activate Nrf2.
69

Nrf2 may be involved in diseases associated with insulin-resistance.®”7%72 Nrf2 activity declines with age,
making the elderly more susceptible to oxidative stress-mediated diseases.” Nrf2 is involved in the protection
against lung”™ or endothelial damage. " Nrf2 activating compounds downregulate ACE2 mRNA expression
in human liver-derived HepG2 cells.”® Genes encoding cytokines including IL-6 and many others specifically
identified in the ”cytokine storm” have been observed in fatal cases of COVID-19. ACE2 can inhibit NF-xB
and activate Nrf2.77

7-2- Sulforaphane, the most potent Nrf2 natural activator

Isothiocyanates are stress-response chemicals formed from glucosinolates in plants often belonging to the



cruciferous family, and more broadly to the Brassica genus including broccoli, watercress, kale, cabbage, col-
lard greens, Brussels sprouts, bok choy, mustard greens and caulifiower .”® The formation of isothiocyanates
from glucosinolates depends on plant-intrinsic factors and extrinsic postharvest factors such as industrial
processing, domestic preparation, mastication, and digestion. 7

Sulforaphane [I-isothiocyanato-4-(methylsulfinyl)butane] is an isothiocyanate occurring in a stored form
such as glucoraphanin in cruciferous vegetables 323!, Sulphoraphanes are also found in fermented cabbage
2882 Present in the plant as its precursor, glucoraphanin, sulforaphane is formed through the actions of

myrosinase, a 3-thioglucosidase present in either the plant tissue or the mammalian microbiome 8384,

Sulforaphane is a clinically relevant nutraceutical compound used for the prevention and treatment of chronic
diseases and may be involved in ageing.®> Along with other natural nutrients, sulforaphane has been suggested
to have a therapeutic value for the treatment of coronavirus disease 2019 (COVID-19).86

One of the key mechanisms of action of sulforaphane involves the activation of the Nrf2-Keapl signaling
pathway.8”Sulforaphane is the most effective natural activator of the Nrf2 pathway, and Nrf2 expression
and function is vital for sulforaphane-mediated action.3%3? Sulforaphanes were suggested to be effective
in diseases associated with insulin resistance'%%-92 It has been proposed that SARS-CoV-2 downregulates
ACE2 and that there is an increased insulin resistance associated with oxidative stress through the AT R
pathway. Fermented vegetables and Brassica vegetables release glucoraphanin, converted by the plant or
by the gut microbiome into sulforaphane, which activates Nrf2 and subsequently reduces insulin intolerance
(Figure 5B).

7-3- Lactic acid bacteria
Antiozidant activity of Lactobacillus

The gastrointestinal (GI) tract is challenged with oxidative stress induced by a wide array of factors, such
as exogenous pathogenic microorganisms and dietary aspects. Redox signaling plays a critical role in the
physiology and pathophysiology of the GI tract®®. The redox mechanisms of Lactobacillus spp. are involved
in the downregulation of ROS-forming enzymes,’»? and redox stress resistance proteins or genes differ
largely between LAB species. In addition, Nrf-2 and NF-xB are two common transcription factors, through
which Lactobacillus spp. also modulates oxidative stress. 26

Do lactobacilli prevent insulin resistance?

Hundreds of studies have attempted to find an efficacy of LAB on insulin resistance-associated diseases.
However, most of them are underpowered or have some methodological flaws. Moreover, not all LAB
strains have the same action on insulin resistance °7 and new better designed studies with the appropriate
LAB are required. A large meta-analysis found that the intake of probiotics resulted in minor but consistent
improvements in several metabolic risk factors in subjects with metabolic diseases, and particularly in insulin
resistance®®. Another recent meta-analysis found that an oral supplementation with probiotics or synbiotics
has a small effect in reducing waist circumference but no effect on body weight or body mass index (BMI)
99 Kefir, a fermented milk product, was not found to be more effective than yoghurt in the glycemic control
of obesity, possibly because there are insufficient differences between both 190,

Lactobacillus and Nrf2

Nrf2 may be involved in diseases associated with insulin resistance’72. “Ancient foods”, and particularly

those containing Lactobacillus , activate Nrf25?. The microbiome is highly related to insulin resistance. In
mice, several strains of Lactobacillus were found to regulate Nrf2 in models of ageing '°!, in cardioprotective
effects!??, and in non-alcoholic fatty acid liver disease!®3. Lactobacillus plantarum CQPCI11 - isolated
from Sichuan pickled cabbages - antagonizes oxidation and ageing in mice!®*. Lactobacillus protects against
ulcerative colitis by modulation of the gut microbiota and Nrf2/Ho-1 pathway!%>. The sugary kefir strain,
Lactobacillus mali APS1, ameliorates hepatic steatosis by regulation of Nrf2 and the gut microbiota in rats
106 In witro studies have also found an effect of Lactobacilli mediated by Nrf2!07-199  Interestingly, the



symbiotic combination of prebiotic grape pomace extract and probiotic Lactobacillus sp. reduces intestinal
inflammatory markers.'1?

Coronavirus disease in animals and lactic acid bacteria.

The porcine epidemic diarrhea virus (PEDV) and the Transmissible Gastroenteritis Coronavirus Infection
(TGEV) are worldwide-distributed coronaviruses. Low levels of Lactobacillus were found in the intestine of
piglets infected by TGEV ! or PEDV. Lactobacillus inhibits PEDV or TGEV effects in vitro'!2:113,

7-4- Nrf2 and COVID-19

A putative mechanism may be proposed (Figure 5). SARS-CoV-2 downregulates ACE2 inducing an increased
insulin resistance associated with oxidative stress through the AT R pathway. This may explain risk factors
for severe COVID-19.

Fermented vegetables are often made from cruciferous (Brassica) vegetables that release glucoraphanin con-
verted by the plant or by the gut microbiome into sulforaphane which activates Nrf2 and subsequently
reduces insulin intolerance by its potent antioxidant activities. Fermented vegetables contain a high content
of Lactobacillus that can activate Nrf2 and impact on the microbiome. !'*Sulforaphane and LAB both
therefore have the ability to reduce insulin resistance.

Other putative actions on COVID-19 severity may be postulated. The down-regulation of ACE2 reduces
the Ang-1,7 anti-oxidant activity that was found to activate Nrf2. 115116 Nrf2 protects against hallmarks of
severe COVID-19. It has anti-fibrotic effects on various organs including the lungs, ''7 protects against lung
injury and acute respiratory distress syndrome,''® and endothelial damage, 7 . Finally, Nrf2 can block IL-6
in different models of inflammation'!? and might play a role in the COVID-19 cytokine storm.

These different mechanisms may explain the importance of fermented cabbage in preventing the severity of
COVID-19. It is clear that other nutrients, vitamin D 2 and many different foods act on NRF2 and that
mechanisms other than Nrf2 may be operative.

It is not yet known whether sulforaphane and/or LAB may act on the infectivity of SARS-CoV-2. Disulfide
bonds can be formed under oxidizing conditions and play an important role in the folding and stability of
some proteins. The receptor-binding domain of the viral spike proteins and ACE2 have several cysteine
residues. Using molecular dynamics simulations, the binding affinity was significantly impaired when all of
the disulfide bonds of both ACE2 and SARS-CoV/CoV-2 spike proteins were reduced to thiol groups. This
computational finding possibly provides a molecular basis for the differential COVID-19 cellular recognition
due to the oxidative stress.'?!

It is likely that foods with anti-oxidant activity can interact with COVID-19 and that fermented or cruciferous
vegetables represent one of the possible foods involved. If some foods are found to be associated with a
prevention of COVID-19 prevalence or severity, it may be of interest to study their LAB and/or sulforaphane
composition in order to eventually find some common mechanisms and targets for therapy.

May dietary modifications change the course of COVID-19?
8-1- Fermented vegetables and Kimchi

It is tempting to propose that countries where traditional LAB-fermented vegetables are largely consumed are
those showing lower COVID-19 death rates and that fermented vegetables represent one possible preventive
approach. Other nutrients are found in these products that may enhance their effect (e.g. vitamin K
122y Kimchi fermented from many vegetables including cabbage has several effects on insulin resistance
associated diseases: anti-diabetic properties,'?*'24 cardiovascular diseases, 2°dyslipidemia '2° or ageing.
126Kimchi, when fermented for a long time, reduces insulin intolerance to a greater extent than fresh kimchi,
123 indicating that newly formed products during fermentation are important. In particular, Kimchi from
cabbage and Chinese cabbage contains several glucosinolates'?”-12? that can be transformed in sulforaphanes



either in the plant itself or by the human microbiome.?” In central European countries, raw and fermented
cabbage is commonly consumed.

In Sub-Saharan Africa, people commonly eat fermented foods, mainly cereal-based foods like sorghum, millet
and maize, roots such as cassava, fruits and vegetables.

It is clear that sauerkraut is consumed in Alsace (France) where a COVID-19 outbreak has been identified,
but it is not a regular meal.

8-2- Westernized diet

Westernized diets contain a reduced amount of fermented vegetables??:139 and may be prone to increasing

insulin resistance 41131 and diseases associated with it,!3? and thereby severe COVID-19.

In the Mediterranean diet, well known for reducing insulin resistance,'3® Nrf2 appears to play an important
role.9%134 The COVID-19 death rate differences in Italian (Figure 2) and Spanish ? regions suggest a role for
Mediterranean diet and short chain food supply. This also indicates that many foods can have an effect and
that cabbage and fermented foods represent a proof-of-concept. Nrf2 is also involved in the Okinawan-based
diet 8, active on insulin intolerance.!3® Taken altogether, it is possible that diet is partly involved in the
COVID-19 death clusters found in large Western cities where traditional diet is often replaced by long chain
food supply.

Conclusion

Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables
contain many lactobacilli, also potent Nrf2 activators. It is proposed that fermented cabbage is a proof-of-
concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects helpful in mitigating
COVID-19 severity.

Mainstream COVID-19 control strategies including social distancing, confinement and intensive case finding,
testing, tracing and isolating are so far not enough to provide a SARS-CoV-2-free environment and restore
a safe social life. There are hopes for a safe and effective vaccine, but this is unlikely to become rapidly
available. So, there is a need to explore other potentially useful strategies. An area that has not been
sufficiently considered is diet, both as a preventive and/or therapeutically useful intervention, encouraging
people to eat more traditional foods containing fermented vegetables. We have suggested that fermented
vegetables could be associated with a lower COVID-19 mortality due to their potent antioxidant effect among
which sulforaphane and LAB are important. However, many other foods may have a similar activity. It
should be noted that dietary supplements that over-activate Nrf2 may have side-effects.!36

Robust evidence from observational studies would be helpful to formally investigate associations between
fermented foods and clinical outcomes in COVID-19. State-of-the-art methods, including the use of DAGs
(Directed Acyclic Graphs), may be needed to help assess whether the associations seen are likely to represent
causal relationship'®”. A faster approach would be to develop large clinical trials in the appropriate popu-
lations. Interventions based on diets with a high intake of fermented foods like Kimchi or other fermented
foods are unlikely to present ethical difficulties. Furthermore, the fact that a precise mechanism has been
proposed would facilitate adding reliable biomarkers to the relevant clinical outcomes. Moreover, new drugs
based on the components of these fermented foods may be of interest.

If the hypothesis is proved, COVID-19 will be the first infectious disease outbreak associated with a loss
of “nature”!®® and to be ascribed as a disease of the Anthropocene '3?. Imbalance in the gut microbiota
is responsible for the pathogenesis of various disease types including allergy, asthma, rheumatoid arthritis,
different types of cancer, diabetes mellitus, obesity and cardiovascular disease!#?. Fermentation was intro-
duced during the Neolithic age and was essential for the survival of human kind. When modern life led to
eating reduced amounts of fermented foods, the microbiome drastically changed 4!, allowing SARS-CoV-2
to spread or to be more severe 2. It is time for mitigation!43.
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Table 1: Possible risk factors for COVID-19 infection explaining geographical differences

Individual level Country /region level
A Contact with a ++++ Case zero identified
SARS-CoV-2 infected ++4+++ e.g. Lombardy
individual
A Intensity of social ++ +++
contacts
A Intensity of +++ ++
occupational contacts
A Confinement (level) +++ +++ e.g. US versus EU
Sweden vs Nordic
countries
A Confinement (early +++ +++ e.g. UK versus EU
measures)
A Climatic conditions ? ++ Hot and humid
(temperature, humidity) temperature may reduce
infection but epidemic
bursts in Brazil, Peru
and Ecuador
A GDP of a ? +
country/region
A Vitamin D ? +
B Diet ? + The map of COVID-19

deaths in Europe and the

low prevalence in Asia

and Africa suggest a role

for diet
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Individual level

Country /region level

QOQwWw

oNe@!

Food

Long food chain supply

Traditional fermented
food (example of food)

Air pollution
Underserved area

Age

Comorbidities (severity
of COVID-19)

Sex

Institutionalized person

4?7

47

47

+?
++
+++
+++

++
++

+ Bibliographic analysis
suggests a role for some
fermented foods. Raw
cabbage can be fermented
in the intestine. Kefir is
largely used in many
low-prevalence countries.
+ In Italy and Spain,
there may be an
association with long
chain supply. This may
be relevant since food
quality differs.

++ This may be a
relevant issue. In former
Eastern European
countries, in the Balkans,
in Africa and in many
Asian countries with
low-COVID-19
prevalence, traditional
fermented foods are
common (in line with
short food chain supply)
+7?

—+

-t

A: Risk factors at a country level, B: Environment, nutrition, C: individual level

Figure 1: COVID-19 deaths per million inhabitants (May 20, 2020)
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BaselMulnouse Freiburg |

1: French speaking canton
Partly French speaking canton

3: Italian speaking canton
Deaths per million
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Head cabbage (g/day)
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' Cabbage/Brassicaceae
Fermented vegetables Kimchi

——> Glucoraphanin , ,

Mvrosinase

Sulforaphane

Endothelial

‘ Insulin resistance H Lung injury l <+— : Enzymatic activity
ACE: Angiotensin-converting enzyme

Ang: Angiotensin

damage

AT, R: ACE-Angiotensin-II-AT,R axis
Obesity, T2 diabetes, Mas: ACE-2-Angiotensin-(1-7)-Mas axis
Hypertension N Nrf2: nuclear factor erythroid 2 p45-related factor 2
ypAgeing Cytoklne storm TMPRSS2: Trans-membrane serine protease 2
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