Function and therapeutic potential of GPCRs in epididymis
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Abstract

Infertility rates for both females and males have increased continuously in recent years. Currently, effective treatments for male
infertility with defined mechanisms or targets are still lacking. G protein-coupled receptors (GPCRs) are the largest class of
drug targets, but their functions and the implications on therapeutic development for male infertility largely remain elusive.
Nevertheless, recent studies have shown that several members of the GPCR superfamily play crucial roles in the maintenance
of ion-water homeostasis of the epididymis, development of the efferent ductules, formation of the blood-epididymal barrier,
and maturation of sperm. Knowledge of the functions, genetic variations, and working mechanisms of such GPCRs, along with
the drugs and ligands relevant to their specific functions, provide future directions and elicit great arsenal for potential therapy

development for treating male infertility.
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Introduction

The infertility rate of humans has continuously increased in recent years and has become a significant social
burden (Krausz et al. , 2018; Winters et al. , 2014). Currently, infertility ranks as the third most common
public health concern below cancer and cardiovascular disease. Issues in males and females contribute equally
to the increasing infertility rate and nearly 7% of the male population has fertility problems (Krausz et al.
, 2018; Winters et al. , 2014). However, few effective treatments are available for male infertility with
defined mechanisms. It is now well accepted that defects in sperm production, decrease of sperm motility,
and inability of sperm to interact with the oocyte all contribute to male infertility (Aitken, 2006; Elzanaty
et al. , 2002).

After spermatogenesis in the testis, the spermatozoa are morphologically complete but immotile and unable
to fertilize an oocyte. They must travel through the efferent ductules and the epididymis to acquire the
ability to move, capacitate, migrate through the female tract and finally fertilize an oocyte. The efferent
ductules are small, coiled tubules that convey sperm from the testis to the epididymis. In mammals, efferent
ductules begin with several discrete wide-lumen ducts that eventually merge into highly convoluted tubules
with a narrow lumen (Hess, 2015; Joseph et al. , 2011). The efferent ductule epithelium contains ciliated cells
with long motile cilia and non-ciliated cells with microvillus brush borders (Hess, 2015; Joseph et al. , 2011)
(Figure 1). It is now commonly accepted that the major function of the efferent ductules is reabsorption of
luminal fluid, which increases the concentration of sperm before they enter the epididymis (Clulow et al. ,
1998; Hess, 2000; Hess et al. , 2000).

The mammalian epididymis is an exceedingly long, convoluted ductal system connecting the efferent ductules
with the vas deferens. Functionally, the epididymis creates an ideal environment to promote the functional
transformation of spermatozoa and their later storage before ejaculation. The epididymis is segmented into
four functionally distinct segments: the initial segment (not existing in human epididymis), the caput, the
corpus, and the cauda (Abou-Haila et al. , 1984; Zhou et al. , 2018) (Figure 1). The initial segment, together
with the upstream efferent ductules, is responsible for the resorption of the testicular fluid that enters the
duct, resulting in a pronounced concentration of the luminal spermatozoa (Abe et al. , 1984). The caput
epididymis is highly active in protein synthesis and hormone secretion and plays important roles in sperm
maturation. The sperm passing through this region begin to obtain the ability to swim in a progressive
manner and to recognize an oocyte (Aitken et al. , 2007; Chevrier et al. , 1992). The functional maturation
of the sperm continues in the corpus epididymis and reaches full activity in the distal caudal segment. The
caudal segment contains a relatively large lumen, and its surrounding epithelial cells have strong absorptive
activity (Hermo et al. , 1988). There are four main cell types in the epithelium of the epididymal lumen,
namely, narrow cells, clear cells, principal cells, and basal cells. Each cell type has different functions involved
in the establishment and regulation of a unique luminal environment (Cornwall, 2009; Shum et al. , 2009).

In general, an appropriate microenvironment established by the efferent ductules and epididymis is required
for sperm to undergo maturation and acquire progressive motility and the ability to fertilize oocyte during
their transit. To date, the exact molecular mechanism involved in maintaining the effective microenvironment
in the efferent ductules and epididymis remains elusive, which creates significant obstacles to developing
effective treatments for male infertility. Therefore, there is an urgent need to understand the regulatory
mechanisms in the efferent ductules and epididymis involved in both physiological and pathological processes,
and this knowledge will provide potential drug targets for developing effective therapies.

G protein-coupled receptors (GPCRs), also called seven-transmembrane receptors, are a group of important
drug targets, accounting for approximately one-third of all clinically marketed drugs (Hauser et al. , 2018;
Santos et al. , 2017). Although the roles of GPCRs in cardiovascular disease, neuronal disease, diabetes



and many other diseases have been extensively investigated(Desimine et al. , 2018; Dong et al. , 2017;
Hauser et al. , 2017; Kim et al. , 2020; Lammermann et al. , 2019; Li et al. , 2018; Liu et al. , 2017;
Srivastava et al. , 2015), there is a significant knowledge paucity in regard to the functions of GPCRs in the
efferent ductules and epididymis. GPCRs were well known for carrying out their selective functions through
coupling to different G protein subtypes or arrestins(Mangliket al. , 2020; Staus et al. , 2020; Wingler et al.
, 2020). In general, the binding of ligands (such as hormones, neurotransmitters or sensory stimuli) induces
conformational changes in the transmembrane and intracellular domains of the receptor, thereby allowing
interactions with heterotrimeric G proteins or arrestins. For G protein signaling, activated GPCRs act as
guanine nucleotide exchange factors (GEFSs) for the o subunits of heterotrimeric G proteins, catalysing the
release of GDP and the binding of GTP for G protein activation. Different G protein couples to downstream
effectors. For example, the Gs couples to adenyl cyclase whereas the Gq connects to the phospholipase
C(Flock et al. , 2017; Flock et al. , 2015; Furness et al. , 2016; Isogai et al. , 2016; Ritter et al. , 2009;
Sounier et al. , 2015; Venkatakrishnan et al. , 2016). The activated GPCRs are also phosphorylated by a
group of GPCR kinases (GRKs)(Homan et al. , 2014; Komolov et al. , 2017; Reiter et al. , 2006), leading to
the recruitment of a different type of arrestins. The interaction of GPCRs with arrestins turns on a second
wave of signalling(Desimine et al. , 2018; Dong et al. , 2017; Kumari et al. , 2016; Lefkowitz et al. , 2005;
Liu et al. , 2017; Reiter et al. , 2006; Shukla et al. , 2014; Wang et al. , 2018; Yang et al. , 2018; Yang et al.
, 2015). Even a single type of GPCR can initiate a broad range of physiological processes through arrestin
engagement by scaffolding different downstream effectors(Hara et al. , 2011; Liu et al. , 2017; Luttrell et al.
, 1999; Miller et al. , 2000; Peterson et al. , 2017; Srivastava et al. , 2015; Tobin et al. , 2008; Xiao et al. ,
2007; Yang et al. , 2018; Yang et al. , 2015). However, the exact roles of the G protein subtype or arrestins
downstream epididymis GPCRs remain cloudy.

At present, there are no U.S. Food and Drug Administration (FDA)-approved drugs targeting GPCRs in
the efferent ductules or epididymis for the treatment of male infertility. In contrast, there are more than
470 GPCR-targeted drugs for therapies treating other diseases in clinical markets (Hauser et al. , 2018).
Nevertheless, recent research has elucidated the expression patterns and functions of several important
GPCRs in the efferent ductules and epididymis, such as adhesion G protein-coupled receptor G2 (ADGRG2),
angiotensin II receptor type 2 (AGTR2), and leucine-rich repeat containing G protein-coupled receptor 4
(LGRA4), and has successfully developed the corresponding ligands to regulate their functions, illuminating the
possibility of therapeutic developments regarding male infertility (Figure 1). Here, we review the existing
progress of GPCRs in epididymis and efferent ductules, and suggest potential therapeutics directions by
targeting these GPCRs for male infertility.

Function of ADGRG2 in fluid reabsorption and epididymis development

Few GPCRs have tissue-specific distributions in male reproductive systems. ADGRG2, also called G protein-
coupled receptor 64 (GPR64) or human epididymal gene product 6 (HE6), has attracted substantial attention
for its specific expression and essential function in male reproductive systems. It is specifically expressed in
the efferent ductules and the proximal epididymis, with much lower expression levels in other tissues (Table
1) (Kirchhoff et al. , 2008; Obermann et al. , 2003). Further studies confirmed the functional importance
of ADGRG2 in male fertility. The human and mouse ADGRG2/Adgrg2 gene is localized on chromosome
X. Adgrg2 ~/Y mice exhibit reduced sperm numbers, decreased sperm motility and increased number of
spermatozoa with deficient heads or angulated flagella (Davies et al. , 2004). Moreover, dysfunction in the
fluid resorption of the efferent ductules is observed, which might eventually lead to the above-mentioned
phenotypes in Adgrg2 /Ymice (Table 1) (Gottwald et al. , 2006; Zhang et al. , 2018).

ADGRG?2 belongs to the adhesion GPCR subfamily, and all members of this family share a very large N-
terminal domain(Fredriksson et al. , 2003; Hamann et al. , 2015; Hu et al. , 2014; Kishore et al. , 2017;
Liebscher et al. , 2013; Paavola et al. , 2012; Paavola et al. , 2011; Sun et al. , 2013; Wang et al. ,
2014). Many members of this family have been shown to function through G protein coupling (Folts et al. ,
2019; Purcell et al. , 2018). Without known endogenous ligands, these adhesion GPCRs display significant
constitutive activity once their N-terminal region is removed by autocleavage (Demberg et al. , 2015; Hamann



et al. , 2015; Hu et al. , 2014; Kishore et al. , 2016; Purcell et al. , 2018; Sun et al. , 2013; Wang et al.
2014; Zhang et al. , 2018). The transmembrane and cytoplasmic regions remained after cleavage are usually
referred to as the B subunit. Our data showed that in cells overexpressing either full-length ADGRG2
or the ADGRG2-8 subunit, significant constitutive Gs or Gq coupling activity was observed, which was
confirmed by several parallel studies assessing artificial ligands or specific cellular contexts (Demberget al.
, 2015; Hamann et al. , 2015). These studies suggested that ADGRG2-mediated Gs or Gq signaling may
play important roles in the regulation of fluid resorption in the efferent ductules and epididymis (Figure
1). However, the exact functions of G protein subtypes in maintaining the microenvironment of the efferent
ductules or epididymis are still unknown, and the downstream effectors involved in controlling the luminal
ion/water homeostasis balance in these tissues also remain elusive. Interestingly, immunostaining assays
revealed specific expression of ADGRG2 on the apical membrane only in non-ciliated cells (in the efferent
ductules) and principal cells (in the epididymis), not in ciliated cells (Kirchhoff et al. , 2008). The non-
ciliated cells in efferent ductules are frequently referred as principal cells in the epididymis (Burkett et al. |
1987). Cellular expression specificity of ADGRG2 suggests a cell type-specific function of ADGRG?2 in the
regulation of ion/water homeostasis in the efferent ductules and epididymis. The specific expression pattern
of ADGRG?2 allowed us to develop a non-ciliated cell-specific labeling technique by exploiting the promoter
of the ADGRG2 gene. Using this newly developed method, we successfully isolated non-ciliated cells and
showed that a diminished constitutive chloride current was the cause of the imbalanced pH state in the
efferent ductules and dysfunction in fluid resorption inAdgrg2 /¥ mice (Zhang et al. , 2018).

Further analysis combining Gq/* andAdgrg2 /Y mouse models, pharmacological intervention and cell la-
beling techniques demonstrated that ADGRG2 regulated Cl" and pH homeostasis through Gq-dependent
coupling between the receptor and the anion channel CFTR (cystic fibrosis transmembrane conductance
regulator) (Figure 1)(Zhang et al. , 2018). CFTR and ADGRG2 colocalized at the apical membrane of
non-ciliated cells, accompanied by selective high expression of Gq in the same cells. Through coupling to
Gq, ADGRG2 maintains the basic CFTR outward-rectifying current, which is required for fluid resorption
and sperm maturation (Figure 1) (Zhanget al. , 2018). In addition to G protein signaling downstream of
GPCRs, arrestins (members of a family related scaffold proteins) are known not only to mediate endocytosis
of these receptors but also to perform many G protein-independent or G protein-cooperative functions (Dong
et al. , 2017; Liu et al. , 2017; Smith et al. , 2018; Yang et al. , 2018; Yang et al. , 2017Db).

Importantly, whereas disruption of f-arrestin-2 has no significant effects on the fluid resorption function,
B-arrestin-1 deficiency impaired pH and Cl” homeostasis in the efferent ductules and initial segment of the
epididymis (Zhang et al. , 2018). Further investigation confirmed the coexistence of ADGRG2, CFTR,
B-arrestin-1 and Gq in the same protein complex (Figure 1), while B-arrestin-1 deficiency abolished the
colocalization of ADGRG2 and CFTR on the apical membrane. These data suggested that the ADGRG2/p-
arrestin-1/Gq/CFTR supercomplex localizes at the apical membrane of non-ciliated cells and functions as a
regional signaling hub, controlling fluid reabsorption and maintaining pH and Cl" homeostasis in the efferent
ductules and initial segment of the epididymis (Figure 1) (Zhang et al. , 2018). The ADGRG2/CFTR
interaction in the epididymis represents yet another example of the functional divergence between the two 3
arrestin isoforms, already established in several other tissues/organs(Lymperopoulos, 2018; Lymperopoulos
et al. , 2019; Srivastava et al. , 2015). For example, in the heart,3-arrestin-1 and -2 initially thought of as
functionally interchangeable, actually exert diametrically opposite effects in the mammalian myocardium.p-
arrestin-1 exerts overall detrimental effects on the heart, in contrast, 3-arrestin-2 is overall beneficial for the
myocardium(Lymperopoulos et al. , 2019).

Consistent with our findings that inhibition of ADGRG2 or Gq activity caused fluid resorption dysfunction,
recent clinical studies have revealed that multiple ADGRG2 mutations are associated with male infertility.
For example, p.Glub16Ter, p.Leu668ArgfsTer21, p.Arg814Ter, or p.Lys818Ter results in the absence or
truncation of the seven-transmembrane domain, which might abolish receptor coupling to downstream Gq
and Gs proteins and eventually lead to male infertility (Figure 2A, Table 2) (Khan et al. , 2018; Patat et
al. , 2016; Yuan et al. , 2019). The p.Cys570Tyr missense mutation is located close to the GPS region
of ADGRG2, which may affect its autoinhibitory mechanism mediated by the N-terminal subunit (Yang



et al. , 2017a). In contrast, the p.Cys949AlafsTer81 frame shift mutation, the missense p.Lys990Glu and
p-Argl008GIn mutations produce a protein with an intact seven-transmembrane domain, but all of these
mutations cause changes in the C-terminal region of ADGRG2, which may be involved in arrestin recruitment
and the corresponding signaling (Figure 2A, Table 2) (Patat et al. , 2016; Yang et al. , 2017a; Yuan et al.
, 2019). Therefore, different ADGRG2 mutations may cause the same male infertility phenotype through
distinct cellular signaling mechanisms.

Notably, the mutations of ADGRG2 in human mentioned above are clinically associated with congenital
bilateral absence of the vas deferens (CBAVD). In general, CBAVD involves a complete or partial absence
of the Wolffian duct derivatives. In most cases of CBAVD, it is generally presumed that the genital tract
abnormality is developed by a progressive atrophy related to abnormal electrolyte ion balance and dysfunction
of fluid homeostasis in the male excurrent ducts rather than agenesis. This model is supported by the link
between CBAVD and mutations of the gene encoding the CFTR chloride channel (Patat et al. , 2016). In
our recent report, we have demonstrated a functional coupling between the ADGRG2 and the CFTR serves
as the key event in maintenance of the Cl” and pH homeostasis in efferent ductules and epididymis,of which
a persistent dysfunction may finally cause progressive atrophy of the efferent/epididymis ductules (Zhang et
al. , 2018). Thus, the impairment of the ADGRG2/CFTR coupling may directly relate to the CBAVD in
the male infertility patients.

It’s worth noting that the infertile patients are usually identified at their adult age, whereas the animal
model normally has a shorter life span. This could explain the ADGRG2 knockout mice did not develop
the CBVAD in their life time. For an ADGRG2-targeted therapy for treating male infertility, a systematic
screening for male sterility gene, and the identification of the genetic mutations in ADGRG2 or CFTR, as
well as genetic or pharmacological intervening in the early stage of a male patient carrying the mutations
could be considered.

Currently, the endogenous ligands for ADGRG?2 are still unknown. However, the ADGRG2 @-subunit itself
shows significant constitutive G protein activity and is able to activate the CFTR current in transfected
HEK293 cells (Zhang et al. , 2018). Therefore, further investigation is needed to determine whether con-
stitutive ADGRG2 activity is sufficient to maintain the microenvironment of the epididymis and efferent
ductules or whether an endogenous ADGRG2 ligand is required in this process. It is worth noting that
a 15-amino acid peptide derived from the N-terminus of the ADGRG2 B-subunit was shown to activate
ADGRG2 with low affinity (Table 3) (Demberg et al. , 2015). Further modification of ADGRG2 ligands
derived from this peptide might increase the activity of certain ADGRG2 mutants and exhibit therapeutic
potential. Alternatively, we have also shown that activation of angiotensin II receptor type 2 (AGTR2)
in the efferent ductules is able to rescue fluid resorption dysfunction in isolated efferent ductules derived
from Adgrg2/Y mice (Zhang et al. , 2018). Thus, further investigation is warranted to determine whether
specific therapeutic methods such as treatment with a selective agonist need to be developed for different
ADGRG2 mutants or whether a general rescue approach such as AGTR2 activation is sufficient to treat
patients carrying ADGRG2 mutations.

Endogenous angiotensin system and AGTR2 in epididymis

The epididymal lumen and efferent ductules contain a complete local renin-angiotensin system (RAS) includ-
ing renin, angiotensin I (ANGI) and angiotensin IT (ANGII) in the seminal fluid, the angiotensin-converting
enzyme specific to the testes (tACE), and angiotensin II receptor type 1 (AGTR1) and angiotensin II recep-
tor type 2 (AGTR2) in the basal cells of the epididymis (Leung et al. , 2003; Saez et al. , 2004; Speth et
al. , 1999; Wong et al. , 1990; Zhao et al. , 1996). Importantly, ANGII in the epididymal lumen is mainly
produced through the cleavage of ANGI by angiotensin I-converting enzyme (ACE) (Langford et al. , 1993;
Sibony et al. , 1994). Deficiency in tACE leads to male infertility through impairing the function but not
the production of sperm, implying that the RAS plays an important role in sperm maturation (Esther et al.
, 1996; Hagaman et al. , 1998; Krege et al. , 1995).

AGTRI1 and AGTR2 have been found in a radio-ligand binding assay to be expressed in the epididymal



lumen. In particular, AGTR2 was specifically detected in basal cells and found to be required for the proton-
secretion function of the epididymal lumen (Figure 1 and 2B, Table 1) (Shum et al. , 2008). Unexpectedly,
AGTR2 was absent in clear cells, which regulated proton secretion. Further studies showed that AGTR2
activated the nitric oxide (NO)-cGMP pathway in response to ANGII stimulation in basal cells (Figure
1). NO produced by basal cells quickly diffuses to clear cells, activating soluble guanylate cyclase. Then,
the elevation of the cGMP concentration mediated by guanylate cyclase triggers the apical accumulation of
V-ATPase in the microvilli, ultimately leading to increased proton secretion (Figure 1) (Shum et al. , 2008).
This model is consistent with the essential role of ANGII production and the requirement for tACE in the
maintenance of the proper luminal ion/water environment and sperm maturation. Thus, a delicate signaling
network between basal cells and adjacent clear cells modulated by the receptor AGTR2 may contribute to
the finely tuned microenvironment of the luminal space of the epididymis.

Interestingly, male infertility may result from dysfunction in the proton balance in the efferent ductules
without significant impairment of AGTR2 function, suggesting that an AGTR2-targeted treatment may
have therapeutic potential. In our recent study, although administration of 1 yM ANGII had no significant
effect, applying 100 nM ANGII restored pH homeostasis and fluid reabsorption in efferent ductules derived
fromAdgrg2 ~/Y mice. This rescue effect was blocked specifically by PD123319, an AGTR2 antagonist, but
not by an ANGII antagonist (Zhang et al. , 2018). Therefore, the specific agonists of AGTR2 could be
considered as therapeutic drugs to treat male infertility associated with a significant impairment in the pH
balance in the efferent ductules or epididymis.

For AGTR2, both peptide-based agonists and small chemical compound agonists have been developed, which
have therapeutic potential to treat several human diseases (Table 3) (Bennion et al. , 2018; Hallberg et al. |
2018). Sarile and saralasin are two peptide AGTR2 agonists that have been approved by the FDA to treat
hypertension and used in the clinic for a short period (Table 3) (Guimond et al. , 2014; Hallberg et al. ,
2018). These peptides inactivate AGTR1 but activate AGTR2. Currently, it remains unknown whether the
blockade of AGTRI1 activity is dispensable for the normal function of the efferent ductules or epididymis.
Therefore, the application of these two peptides for the treatment of sperm obstruction in male infertility
requires further evaluation. Recently, B-Pro” AnglIl was reported to show high selectivity for the activation
of AGTR2 but no significant effect on AGTR1 (Hallberg et al. , 2018), providing an alternative choice
for peptide-based AGTR2 activation therapy in male infertility. Small-molecule compounds have also been
developed to target AGTR2 activation for clinical treatment. For example, MP-157 was used as an AGTR2
agonist for cardiovascular disease treatment in a phase I clinical trial, whereas C21/M24 was examined in a
phase II exploration of idiopathic pulmonary fibrosis (IPF) (Table 3) (Hallberg et al. , 2018). Testing these
small-molecule compounds or their derivatives will be of great interest for developing treatment for male
infertility related to impaired pH homeostasis in the efferent ductules or epididymis.

LGRA4, an essential GPCR for epididymal development

LGR4, also called G protein-coupled receptor 48 (GPR48), is a member of the LGR subgroup of the
rhodopsin-like GPCR superfamily, which derives its name from a large extracellular domain consisting of
multiple leucine-rich repeats (Figure 2C). LGRA4 is widely expressed in multiple human and mouse tissues,
with the highest expression levels in the epidermis and hair follicles of the skin, pancreatic islet cells, and
epithelial cells in the male and female reproductive organs (Van Schoore et al. , 2005; Yi et al. , 2013).

LRG4 has been shown to play an important role in postnatal epididymal development in mice. In Lgr4
knockout mice, the epididymal tubule, especially the caput region, fails to elongate and convolute, and
the resulting duct is surrounded by a thick condensation of mesenchymal cells. This abnormal cellular
organization suggests that LGR4 is important for epithelial-mesenchymal interactions (Table 1) (Mendive
et al. , 2006). Furthermore, the expression levels of estrogen receptor o (ERo) and androgen receptor (AR)
are dramatically reduced in the epididymis of male Lgr4 knockout mice, which in turn leads to decreased
expression of Nat-KT-ATPase, Na™ /H"hydrogen exchanger 3 (NHE3), and aquaporin 9 (Aqp9) (Li et al.
, 2010). LRG4 upregulates ERo expression via the cAMP /PKA signaling pathway (Figure 1). Downstream
of the LRG4-cAMP-PKA pathway, CREB binds to a Cre motif in the ERa promotor and activates its



expression (Li et al. , 2010).

The pivotal role of LGR4 in the epididymis is further supported by alLgr/ hypomorphic mutant mouse
line (Lgr4©! ) that was developed through gene-trap insertional mutagenesis. Short and dilated epididymal
tubules are detected in homozygous Lgr4©*/ Gt mice, which have only one-tenth the normal Lgr/ expression
level. Moreover, multilamination and distortion of the basement membranes (BMs) is observed in the caput
region, and the initial segment is completely lost (Hoshii et al. , 2007). Lgr4knockout or hypomorphic mice
also show deficits in the testes and efferent ductules (Qian et al. , 2013), which together with the epididymal
defects eventually lead to male infertility in mice.

Overexpressed LGR4 has been found to activate heterotrimeric Gs proteins to elevate intracellular cAMP
levels (Gaoet al. , 2006). Moreover, R-spondins and norrin were identified as LGR4 ligands that could bind
LGR4 and stimulate the Wnt signaling pathway (Table 3) (Carmon et al. , 2011; de Lau et al. , 2011; Deng et
al. , 2013; Glinka et al. , 2011). Recently, tumor necrosis factor (TNF) superfamily member 11 (TNFSF11,
also known as RANKL) was identified as a novel LGR4 ligand (Table 3) (Luo et al. , 2016). TNFRSF11A
(also called RANK) was considered to be the sole receptor for TNFSF11 until LGR4 was found to compete
with RANK and suppress canonical RANK signaling. TNFSF11 binds to LGR4 and subsequently activates
the Gq and glycogen synthase kinase 3 beta (GSK3-B) signaling pathway (Luo et al. , 2016). At present,
synthesized agonists or antagonists of LGR4 have not been reported.

Complex functions of G protein-coupled estrogen receptor 1 ( GPER) in the epididymis

GPER, also known as G protein-coupled receptor 30 (GPR30), was first identified as a receptor that demon-
strated MAP kinase (Erkl/2) activation by binding to estrogen (Prossnitz et al. , 2007). Compounds such
as the GPER antagonist fulvestrant (ICI 182780) and GPER agonist G-1 can also modulate GPER to induce
rapid nongenomic cellular responses (Bologa et al. , 2006; Lucas et al. , 2010; Revankar et al. , 2005). Un-
like the other members of the GPCR family that mainly reside on the plasma membrane, GPER is broadly
localized on the endoplasmic reticulum and nuclear envelope as well as the plasma membrane (Figure 1)
(Funakoshi et al. , 2006; Prossnitz et al. , 2007; Thomas et al. , 2005).

GPER has been detected in many male reproductive structures, such as the testes (Cassault-Meyer et al.
, 2014; Gautier et al. , 2016; Lucas et al. , 2010), spermatozoa (Arkoun et al. , 2014; Cassault-Meyer et
al. , 2014; Gautier et al. , 2016), and prostate (Rago et al. , 2016). It has also been found in the efferent
ductules and epididymis (Cao et al. , 2017; Hess et al. , 2011; Katleba et al. , 2015; Krejcirova et al. , 2018;
Lu et al. , 2016; Malivindi et al. , 2018; Martinez-Traverso et al. , 2015; Menad et al. , 2017; Pereira et al. ,
2014; Rago et al. , 2018), indicating that GPER may play important roles in sperm maturation, protection
and storage (Table 1). For instance, in the corpus epididymis of postnatal pigs, GPER participates in
sperm maturation by affecting the formation of the blood-epididymal barrier (Katlebaet al. , 2015). In the
caudal epididymal epithelium in immature rats, GPER induces a pathway involved in cAMP-CFTR-chloride
secretion to regulate osmotic pressure in response to a perfusion solution and thus affects sperm motility
(Figure 1) (Caoet al. , 2017).

In addition, the relative abundance of GPER in the efferent ductules and each part of the epididymis, the
cellular localization of GPER, and the molecular weight of the protein differ depending on the species,
developmental stage, and physiological cycle studied (Krege et al. , 1995; Krejcirova et al. , 2018; Lu et al.
, 2016; Pereira et al. , 2014). Therefore, the role of GPER in the efferent ductules and epididymis appears
to be complex. The first GPER-specific agonist, G-1, has been identified through virtual and biomolecular
screening (Table 3) (Bologa et al. , 2006). Based on the synthesis of the G-1 analog as well as additional
screening, two GPER-specific antagonists, G15 and G36, were also identified, both of which inhibit estrogen-
and G-1-stimulated cell proliferation in vivo (Table 3) (Dennis et al. , 2009; Dennis et al. , 2011). Recently,
a series of indole-thiazole derivatives were identified as new GPER agonists (O’Dea et al. , 2018). These
newly identified agonists and antagonists provide very useful tools for further evaluation of the therapeutic
potential of GPER in treating male infertility, given the potential complex function of GPER in male systems.
Overall, the evaluation of GPER as a drug target in male infertility requires further investigation, and the



new compounds identified for specific regulation of GPER. activity will certainly accelerate this assessment.
Two adenosine receptors with opposite functions in the epididymis

Adenosine receptors consist of four members, namely, Ay, Asa, Ao, and A3. Adenosine receptors are
activated by adenosine and transmit signals through classic G protein-cAMP or B-arrestin pathways (Table
1) (Geldenhuys et al. , 2017). Most adenosine receptors have been suggested to be present in the epididymis
(Table 1) (Haynes et al. , 1998b; Minelli et al. , 1995).

The A; and A, adenosine receptors have been shown to regulate the contractility of the vas deferens and
epididymis (Table 1) (Brownhill et al. , 1996; Haynes et al. , 1998a; Haynes et al. , 1998b). Interestingly,
it seems that the A; and As receptors have opposite effects on the contractility of the epididymis: the
A; receptor enhances the contractility, whereas the Ay receptor inhibits the contractility (Haynes et al.
1998b). This phenomenon might be explained by the difference in their G protein-coupling selectivity (van
Galenet al. , 1992). In the epididymis, Ay adenosine receptors increase intracellular cAMP levels (Haynes
et al. , 1998b), consistent with the generally accepted view that A, adenosine receptors are coupled to
Gs-protein and activate adenylyl cyclase to increase intracellular cAMP levels (Figure 1) (Fredholm et al. |
1994). Further investigation showed that the Ass receptor mediates potassium channel activation through
protein kinases A and G in rat epididymal smooth muscle (Haynes, 2000). This result is consistent with the
finding that Asreceptor activation stimulated cAMP-dependent protein kinase A, which in turn modulated
potassium channel activity in arterial or skeletal muscles (Barrett-Jolley et al. , 1996; Kleppisch et al. |
1995). In contrast, the A; adenosine receptor is likely coupled to effectors through Gi/o proteins, although
confirmative evidence is still lacking (Haynes et al. , 1998b).

Adenosine (and its precursor ATP) has been used for several decades to treat cardiac arrhythmias through
activating Ajadenosine receptors (Szentmiklosiet al. , 2015). Adenosine is also the gold-standard agent
to create maximum coronary hyperemia through activating Assadenosine receptors (McGeoch et al. |
2008). However, given that adenosine can activate various adenosine receptors, it inevitably produces some
undesirable adverse effects. To avoid nonspecific global adverse reactions, selective agonists of A1, Asa, and
A3 adenosine receptors have been developed, some of which are currently undergoing clinical trials (Jacobson
et al. , 2019). For example, the A; adenosine receptor partial agonist trabodenoson (INO-8875) was tested
for the treatment of glaucoma and ocular hypertension, but it failed in a phase 3 trial because its primary
endpoint was not achieved (Table 3) (Jacobson et al. , 2019). The moderately selective Az adenosine
receptor agonist regadenoson was first approved as a pharmacological stress agent in 2008 and is currently
being tested in various clinical trials for cardiovascular treatment and diagnosis (Table 3) (Jacobson et al.
, 2019). The moderately selective A3 adenosine receptor agonist IB-MECA (CF101, piclodenoson) is being
tested in a phase 3 clinical trial for the treatment of autoimmune anti-inflammatory diseases (Table 3)
(Jacobson et al. , 2019).

An important limitation of adenosine receptor agonists is agonist-induced desensitization (Mundellet al. |
2011). The application of either partial agonists or positive allosteric modulators (PAMs) may circumvent
desensitization and improve therapies. Currently, only adenosine and regadenoson are approved for human
use (Jackson et al. , 2018). However, many adenosine receptor agonists and PAMs (such as the A; adenosine
receptor PAM benzoylthiophenes) are being tested in humans, and it is of great interest to test the effects
of these compounds on the regulation of epididymis functions and the treatment of male infertility.

Future questions and perspectives

Numerous GPCRs are expressed in the efferent ductules and epididymis, which consist of various cell types.
Thus, the following questions arise. (1) Which GPCRs are expressed in a particular cell type? (2) How do
these GPCRs contribute to the development and normal physiological functions of the epididymis and efferent
ductules? (3) Can any of these GPCRs functionally compensate for each other? (4) If so, is it possible to
activate an alternative GPCR in the epididymis or efferent ductules to rescue the dysfunction of a particular
GPCR, such as in cases of infertility caused by ADGRG2 mutations? (5) Is there crosstalk between different
GPCRs or between GPCRs and other membrane proteins in specific cell types? (6) Are endogenous ligands



of the GPCRs in epididymis and efferent ductules constantly produced in the local environment to actively
regulate specific physiological processes of epididymis development and sperm maturation? (7) Do second
messengers downstream of GPCRs, such as cAMP and calcium, have distinct functions in different types
of cells in the epididymis and efferent ductules, and how are they regulated by different GPCRs? (8) Are
location bias (signaling compartments) and effector bias important for the regulation of different GPCRs
expressed in the epididymis and efferent ductules? (9) What are the endogenous ligands for ADGRG2,
AGTR2, GPER and LGR4 in the local male fertility system? (10) Do FDA-approved drugs targeted to
GPCRs with known functions in the epididymis, such as AGTR2 and adenosine receptors, have beneficial
effects on male fertility? (11) Are there regional drug delivery systems that can target specific GPCRs in
the epididymis to decrease the side effects of GPCR ligands? To answer these questions, a systematically
investigation of the GPCR expression in epididymis and efferent ductules by transcriptional analysis and
the single cell sequencing; utilization of the conditional knock mice driven by the specific epididymis or
efferent ductile marker Cre; combined with the molecular and cellular approaches to delineate the mechanism
underlying the specific GPCR functions in male infertility and the usage of the biochemical approach and the
proteomics and metabolomics to identify the endogenous ligands for specific GPCR such as the ADGRG2,
will lay an important foundation for evaluation of these GPCRs as potential therapeutic targets for male
infertility treatment. Moreover, usage of the specific known chemical ligands for these GPCRs, united by
the selective drug delivery methods and assessment of the effects of these ligands in male infertility mice
models will provide further information for drug development toward these GPCRs.

Conclusions

(1) Male infertility rates have continuously increased in recent years, and few effective treatments with known
targets and defined mechanisms exist. Recently, the identification of mutations in specific GPCR superfamily
members related to male infertility and the increased understanding of the detailed molecular mechanisms
involving these GPCRs in the regulation of sperm maturation and homeostasis of the microenvironments of
the epididymis and efferent ductules have provided new clues on the potential development of therapies to
treat male infertility, given that these receptors account for almost 1/3 of current clinical drug targets.

(2) In addition to ADGRG2 and AGTR2, GPCR superfamily members such as LGR4, GPER, and adenosine
receptors are known to play important roles in the regulation of postnatal epididymal development, the
formation of the blood-epididymal barrier, the maintenance of osmotic pressure in a perfusion solution and
the contractility of the epididymis (Table 1). The repertoire of the physiological roles of these GPCRs
and other uncharacterized GPCRs, as well as further detailed studies of these receptor connecting to male
infertility development, provide entirely novel therapeutic opportunities for the treatment of male infertility.

(3) Currently, various small-molecule compounds, peptide ligands and endogenous ligands have been found
or developed to target AGTR2, LGR4, GPER and adenosine receptors (Table 3). It is worth noting that
several such compounds or ligands have been approved by the FDA for the treatment of diseases other
than male infertility. Therefore, there is great interest in testing these ligands and compounds in male
infertility animal models to examine their therapeutic potential. It is also worth noting that endogenous or
high-affinity ligands involved in the regulation of ADGRG2 have not been identified. Such tools are greatly
needed to understand the function of ADGRG2 in male fertility and evaluate the potential role of ADGRG2
as a therapeutic target in male infertility.

(4) Only a small number of the signaling pathways downstream of GPCRs have been characterized in detail
in the efferent ductules and epididymis, and these pathways have shown unique signaling properties, although
they sometimes share signal-transducing effectors (Figure 1). For example, both ADGRG2 and GPER have
been shown to couple to Gs in the epididymis; however, they exhibit distinct subcellular microdomain biases
in their signaling. ADGRG?2 forms a signal transduction complex with B-arrestin-1, Gq and CFTR on the
apical membrane, whereas GPER forms a complex with Gs at the endoplasmic reticulum, nuclear envelope
and plasma membrane (Figure 1). Therefore, even when sharing effectors, the location bias of each GPCR
may determine its detailed specific functions in the epididymis and efferent ductules. This possibility raises
the question of whether activation of an alternative GPCR in the epididymis or efferent ductules will be



able to rescue the dysfunction of a particular GPCR, such as in cases of infertility caused by the ADGRG2
mutations.

(5) Collectively, the complex signaling of GPCR members in the epididymis and the specific physiological
roles of these GPCRs that contribute to male fertility are worthy of further detailed investigation. In addition,
the prospect of using their ligands highlights new opportunities for potential therapies development for male
infertility.
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Figure legends

Figure 1. Schematic showing GPCR signaling and functions in the epididymis and efferent
ductules.

Above: The efferent ductules are a series of tubules that connect the rete testis to the epididymis. The
epithelia of the efferent ductules are mainly composed of two cell types, ciliated cells and non-ciliated cells.
The epididymis is composed of one highly convoluted tubule. The epididymis is segmented morphologically
and functionally into following distinct regions: the initial segment (not existing in human epididymis),
the caput, the corpus, and the cauda. Each part consists of several cell types, including principal cells,
narrow cells, clear cells, and basal cells. Inset: G protein-coupled estrogen receptor 1 (GPER) activates
cAMP-CFTR-chloride transportation to maintain the osmotic pressure of the perfusion solution. ADGRG2
is located exclusively on the apical membrane in non-ciliated cells. ADGRG2/B-arrestin-1/Gq/CFTR forms
a supercomplex that maintains pH and chloride anion homeostasis. AGTR2 is specifically detected in basal
cells and is essential for the proton-secretion function of the epididymal lumen through activation of the nitric
oxide (NO)-cGMP pathway. Different members of the adenosine receptor family have opposite effects on
the contractility of the epididymis. LGR4 activates Gs to increase intracellular cAMP levels, which promote
ERa expression.

Figure 2. GPCR mutations associated with disease.

Schematic representation of the structures of ADGRG2 (A), AGTR2 (B), and LGR4 (C). The approximate
positions of different mutations are indicated. Abbreviations: PLL domain, pentraxin/laminin/neurexin/sex-
hormone-binding-globulin-like domain; GPS, G protein-coupled receptor proteolytic site; LRR, leucine-rich
repeats.

Tables
Table 1. GPCRs with known functions in epididymis or efferent ductules

Receptor name Family (GRAFS) name Expression I
ADGRG2(GPR64) Adhesion efferent ductules; proximal epididymis (non-ciliated cells; principal cells) f
AGTR2 Rhodopsin basal cells I
LGR4 (GPRA48) Rhodopsin epithelial cells in the reproductive organs €
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Receptor name Family (GRAFS) name Expression

GPER (GPR30)
Adenosine receptor

Rhodopsin
Rhodopsin

testis; spermatozoa; prostate; efferent ductules; epididymis
epididymis

Table 2. Disease-related SNP analysis in GPCRs

GPCR dbSNP rs# cluster id dbSNP allele change Protein residue change Amino acid pos A
ADGRG2(GPR64) Xp22.13  rs879255540 ->T Glu [E]>* 516 C
G>A Cys [C]>Tyr [Y] 570 C
rs879255539 CTGTG>AGA Leu [L]>Arg [R] 668 C
C>T p.Arg [R]>* 814 0]
A>T p.Lys [K]>* 818 C
rs879255538 T>- Cys [C]>Ala [A] 949 C
A>G p.Lys [K]>Glu [E] 990 C
G>A p-Arg [R]>Gln [Q] 1008 C
AGTR2 Xq23 rs121917810 G>T Gly [G]>Val [V] 21 X
T>- Phe [F]>Leu [L] 134 ol
rs5191 G>A Arg [R] >Lys K] 248 n(
LGR4(GPR48) 11pl14.1 rsb87777005 C>T Arg [R]>* 126 L
Table 3. Potential therapeutic ligands targeting to GPCRs in epididymis
Structure (or
Receptor Ligand Sequence) Mode of action Highest status References
ADGRG2 Tethered TSFGILLDLSRTSLRgonist Demberg et
peptide al., 2015
agonist
AGTR2 Angiotensin 1T Aspl-Arg?-Val3-  Agonist Clinic Guimond et al.,
(ANG 1I) Tyr*-Tle®-Hisb- 2014; Hallberg et
Pro’-Phe® al., 2018
Saralasin [Sar!,Val® Ala®] Ang Agonist Clinic Guimond et
1T al., 2014;
Hallberg et al.,
2018
Sarile [Sar! Tle®]Ang Agonist Clinic Guimond et
I1 al., 2014;
Hallberg et al.,
2018
MP-157 No structural Agonist Phase I Hallberg et al.,
formula is 2018
disclosed
C21/M24 Agonist Phase 11 Hallberg et al.,
2018
C38/M132 Antagonist Hallberg et al.,
2018
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Structure (or

Receptor Ligand Sequence) Mode of action Highest status References
LGR4 R-spondins R-spondinl- Agonist Carmon et al.,
4(RSPO1-4) 2011; de Lau
et al., 2011;
Glinka et al.,
2011
Norrin MRKHVLAASFSMASbAEIMGDTDSKTDSSFIMDSDPRRDMB HHAN.YDSISHPLY]
2013
TNFSF11(RANKL)Tumor Agonist Luo et al.,
necrosis factor 2016
(TNF)
superfamily
member 11
GPER G-1 Agonist Bologa et al.,
2006
G15 Antagonist Dennis et al.,
2009; Dennis
et al.; 2011
G36 Antagonist Dennis et al.,
2011
A;AR Trabodenoson partial agonist Phase II1 Jacobson et al.,
(INO-8875) 2019
Asx AR Regadenoson agonist Jacobson et
al., 2019
A3AR IB-MECA agonist Phase III Jacobson et
al., 2019
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