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Abstract

Sequential model-based design of experiments (MBDoE) uses information from previous experiments to select run conditions
for new experiments. Computation of the objective functions for popular MBDoE can be impossible due to a non-invertible
Fisher Information Matrix (FIM). Previously, we evaluated a leave-out (LO) approach that design experiments by removing
problematic model parameters from the design process. However, the LO approach can be computationally expensive due to
its iterative nature and some model parameters are ignored. In this study, we propose a simple Bayesian approach that makes
the FIM invertible by accounting for prior parameter information. We compare the proposed Bayesian approach to the LO
approach for designing sequential A-optimal experiments. Results from a pharmaceutical case study show that the Bayesian
approach is superior, on average, to the LO approach for design of experiments. However, for subsequent parameter estimation,

a subset-selection-based LO approach gives better parameter values than the Bayesian approach.

Introduction

Mathematical models are used in chemical and pharmaceutical industries for analysis, design and control
of chemical processes and for maximizing product quality and profit.!? Especially in pharmaceutical indus-
tries, models are important for Quality by Design and development of continuous manufacturing processes,
which are becoming more widespread.?® Mathematical models for pharmaceutical product development can
be either empirical or mechanistic.” " Although empirical models are commonly used for pharmaceutical
processes, they cannot reliably predict the system behavior outside the range of operating conditions used
for model development.® Therefore, fundamental models, based on underlying chemistry and physics, are
preferred.” These models usually contain unknown parameters that require estimation using experimental
data.'® To obtain informative data, it is advantageous to carefully plan the experiments aimed at parameter
estimation using design of experiment (DoE) techniques.'! As shown in Table 1, optimal model-based design-
of-experiments (MBDoE) techniques select experiments to minimize uncertainties in parameters estimates
or model predictions.'>* MBDoE techniques are effective because they account for the structure of the
model as well as parameter and measurement uncertainties when selecting new run conditions.''> Other
benefits of MBDoE techniques, compared to traditional factorial designs, are that they can be readily used
to design any number of experiments, e.g., one, three or seven experiments, depending on available resources
for experimentation.'®'®¢ MBDoE techniques have been developed to satisfy a variety of objectives including
minimizing total variances of parameter estimates, minimizing the average variance of model predictions,
and designing experiments for model discrimination.®

Table 1 shows several MBDoE objective functions that have been used for development of chemical and
pharmaceutical production models.'> 17 If modelers are interested in obtaining accurate parameter estimates



for their model, A-, D- or E- optimal designs can be selected.'® 7 Alternatively, G- and V-optimal designs
focus on obtaining accurate model predictions at specified operating conditions of interest to the modeler.'8 2!
All of these MBDoE techniques in Table 1 require computation of the inverse of the Fisher Information
Matrix (FIM ) when selecting experimental settings.?! 23 The FIM carries information about how changes
in parameter values can affect the model predictions and is therefore crucial for both MBDoE calculations and
parameter inference.?* For nonlinear models, which are common in chemical and pharmaceutical applications,
computation of theFIM requires linearizing the model around some nominal parameter values.'”2% If these
nominal parameter values are significantly different from the corresponding true values, the selected MBDoE
settings may lead to experimental data that are not very informative.!”-2> Sequential design approaches are
appealing because they enable updating of the parameter values, as well as the experimental strategy, as more
data become available.2% Using sequential experimental designs, valuable information from old experimental
data can be used, which might have been collected for other objectives than model development.?”:28

Computation of the objective functions for sequential MBDoE is problematic if the FIM is noninvertible
or ill-conditioned. Typical causes are limited experimental data, strongly correlated influences of different
parameters, and parameters with little or no influence on the model predictions.? In chemical, biochemical
and pharmacological systems, models often contain a large number of kinetic and transport parameters
(e.g., 10-80 parameters) which may result in noninvertible/ill-conditionedFIM 5.3734 To avoid this problem,
several approaches have been considered during sequential MBDoE calculations including parameter subset
selection, 4293 pseudoinverse methods,?!3¢ Tikhonov regularization,3”4° and Bayesian approaches.!3:41:42

The parameter-subset-selection approach uses a model-reduction perspective.3®4344 In one methodology,
parameters are ranked from most-estimable to least-estimable so that problematic (low-ranked) parameters
can be recognized and fixed at their nominal values.?>#® In this way, experiments can be designed using
a well-conditioned reduced FIM that ignores problematic parameters. Alternatively, pseudoinverse meth-
ods approximate the inverse of the FIM (e.g., using the Moore-Penrose pseudoinverse) during MBDoE
calculations.?!36:46 In Tikhonov regularization, a penalty is added to diagonal elements of theFIM to make
it invertible.293840 Bayesian MBDoE using linear models results in Tikhonov penalties that account for
prior knowledge about parameters. However, for nonlinear models, the situation can be considerably more
complex, depending on how the nonlinearity is treated.'®442 There is little information in the literature
regarding which approach is most effective. In two previous articles, we considered pharmaceutical case
studies involving noninvertible FIM s. Two different approaches were compared: i) a subset-selection-based
approach that leaves out problematic parameters (LO approach) and ii) a simpler approach that uses a
Moore-Penrose pseudoinverse in place of FIM~*(PI approach).2146 These case studies suggest that the LO
approach is often superior to the PI approach for designing both A- and V-optimal experiments.?!46 A
shortcoming of the LO approach is that it can be complicated and computationally expensive due to changes
in the subset of parameters that is left out during MBDoE calculations. This complication motivates us to
find a more convenient approach to deal with singular FIMs during MBDoE.

The focus of the current study is on a simplified Bayesian approach for dealing with singular/ill-conditioned
FIMs during MBDoE. Bayesian approaches have been used in several past MBDoE studies for chemical
and biochemical systems.*”"4? The main benefit of the Bayesian MBDoE framework is that it accounts
for prior knowledge about plausible values of the model parameters.!> However, many researchers raise
concerns about the use of Bayesian approaches in practical engineering systems.!3°? Disadvantages of the
Bayesian approach include uncertainty about the reliability of assumptions made when specifying prior
information.®~®! Undesirable computational complexity can also arise, depending on the assumptions that
are made. As a result, Bayesian MBDoE has not enjoyed widespread applications in chemical process
modeling.

Table 1. Optimality criteria for model-based design of experiments 2146
Optimality Criterion Description
Ja = trace ((FIM)_l) A-optimal design minimizes total parameter variance.



Optimality Criterion Description

Jp = det ((FIM)_l) D-optimal design minimizes the volume of the joint confidence interval for the pa:
JE = Amax(FIM™1) E-optimal design minimizes the largest eigenvalue of the FIM, thereby minimizin

Jog = max |(diag (W (FIMf1 WT)> G-optimal design minimizes the maximum variance of model predictions at user-s

Jy =trace ([ W (F‘Il\/_[)f1 WT) V-optimal design minimizes the total variance of model predictions at user-specifi

The objective of the current article is to formulate and test a simple Bayesian MBDoE approach that is readily
usable by model developers. The effectiveness of the proposed Bayesian approach is compared to that of the
LO approach for designing A-optimal experiments when theFIM is noninvertible. We use the pharmaceutical
case study of Domagalski et al., (2015), which is of interest to our industrial sponsor.52' The associated
dynamic model uses Michaelis-Menten kinetics and enzyme-catalyzed reactions to describe the production
of a pharmaceutical agent.’> The remainder of this article is organized as follows. First, background on
theFIM and sequential A-optimal design is presented. Next, details of the Bayesian and LO approaches for
parameter estimation and experimental design are presented. A simple Bayesian approach is proposed and a
pharmaceutical case study is presented. Results obtained using Monte Carlo (MC) simulations are provided,
revealing that the proposed Bayesian approach is superior to the LO approach for this case study.

Background Information

Fisher Information Matrix for Nonlinear Models

Consider the nonlinear model:
Y =g(d,0) +e(1)

where Y € R is a vector of stacked measured responses, g is the solution of equations that describe the
system, d € R"*P is a matrix of experimental settings (for » runs with D decision variables specified for
each), § € RP is the vector of model parameters ande€R" is a vector of a measurement noise with diagonal
covariance matrixX¥, € RY*N_ For dynamic multi-response models with n sample times per run and
vresponse variables, the total number of data values is N = nvr. TheFIM is computed using a parametric
sensitivity matrixS € RV *P with elements:

Sy = 29ld.0) 9
20|

computed by linearizing the model around the best currently-available parameter values:>3

The elements of S should be scaled using parameter uncertainties sg, and measurement uncertaintiess,, to
reflect the modeler’s prior knowledge:?*

So

Zij = S5, (3)

resulting in a scaled sensitivity matrix Z . The FIM is related to Z by:

FIM =Z7Z (4)

When performing sequential MBDoE calculations, Z contains two parts:2!+46
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where Zq corresponds to experimental settings and data from old experiments. The elements ofZ,q are
fixed during sequential MBDoE and elements of Z ., are determined by the optimizer. After each sequential
design, elements ofZ,q are updated based on the new parameter values and the number of rows inZgyq
increases due to the recent experiments.

Parameter estimation with a noninvertible FIM

When estimating parameters, the FIM should be invertible, otherwise unique estimates for the parameters
cannot be obtained.??29 Several regularization approaches have been used to overcome this problem.38:39:55
One popular approach is to estimate a subset of the model parameters that are estimable, with the re-
maining parameters fixed at nominal values.234%:°6 Table 2 shows computational steps for a commonly used
orthogonalization-based approach that ranks parameters from the most-estimable so problematic (unranked)
parameters that lead to a noninvertible FIM can be determined.*>:5* The ranking starts by computing the
magnitude of each column of the scaled sensitivity matrix Z(Step 1). The parameter corresponding to the
column with the highest magnitude is selected as the most-estimable parameter (Step 2). The columns of
Z are then regressed onto columns ofX, a matrix that contains columns from Z that correspond to the
ranked parameters (Step 3). Residual matrixRy is then computed to remove correlation between columns
for the unranked parameters and columns for the parameters that have already been ranked (Step 4). The
next-most-estimable parameter is the one with the largest magnitude among columns ofRy. In Step 5,
the column corresponding to the next-most-estimable parameter is selected from the originalZ matrix and
included in Xy, resulting in matrix Xj1. Steps two to five are repeated to produce a ranked list with up to
p parameters. The ranking stops when all of the parameters are ranked or at the iteration WhereXng (the
reduced FIM ) becomes noninvertible. The remaining unranked parameters are categorized as problematic.
They either have very little influence on the predicted responses or highly correlated effects with parameters
on the ranked list.#>57 Using this orthogonalization-based ranking approach prior to parameter estimation
helps to avoid numerical problems that would arise due to a noninvertible FIM .

Table 2. Orthogonalization algorithm 4554

Compute the magnitude (i.e., the Euclidean norm) of each column in the Z matrix. Select the column with the largest mag

and calculate the residual matrix:

R,=Z-7, (22

Michaelis-Menten Case Study

Reaction scheme and dynamic model

The case study considered in the current article uses a nonlinear kinetic model based on a Michaelis-Menten
batch reaction for the production of a pharmaceutical agent. Domagalski et al. (2015) used this case study to
develop empirical models based on conventional DoE and response surface methodology.® We used the same
case study to develop and test the LO approach for V-optimal MBDoE in previous work.?! The reaction
starts with reagent SM1 reacting with catalyst D and generating intermediate SM1.D via reversible reaction
(1) in Figure 1. Next, intermediate SM1.D reacts with reagent SM2 to make the product P and release
the catalyst (i.e., reaction (2)). There is also a possibility of generating several impurities: SM2 can react
with P to generate impurity I1, SM1 can be hydrolyzed to form impurity 12, D can be deactivated with
water to make I3, and P can degrade to generate 14. Table 3 provides a fundamental dynamic model for the
Michaelis-Menten batch reaction system. Equations (3.11) to (3.14) show that the concentrations of SM1,



D, SM2, and P are measured, and these measurements have experimental errors. We assume that the water
concentration Cgao and the solution volume Vare constant at 0.10 M and 1.0 L, respectively.

In the study by Domagalski et al., 3 rounds of simulated experiments were performed. In each round,
they conducted 16 fractional-factorial runs + 4 center-point-runs (i.e., 20 experiments in each round and
60 overall). Table 4 shows Domagalski’s center-point settings for their first round of experimentation. We
assume that data for the 4 replicated center-point runs are available for initial parameter estimation and
construction of Zq. Step-by-step computation of Z,q using these runs is described in the Supplementary
Information. The duration of each simulated batch experiment is 6.0 h with measurements taken every 45
minutes, resulting in sampling at 9 times including the initial timet = 0. As a result, each run involves 36
measured values (i.e., 9 values each for ysas1, yp, ysmz and yp).
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Figure . Reaction scheme for Michaelis-Menten case study ©

Table 3. Dynamic kinetic model for the Michaelis-Menten batch reaction system?!

dci% = —k1yCsa1Cp + %CSMlD — ksCsar1Cryo (3.1)
d%D = _klfCSMch + %:;CSMID + koCsniaCsaip — ksCpCh,o (3.2)
dCspin — ki ;Csan Cp — %{lCSMlD — k2Csm2Csnip (3.3)
dCsrz — Ly COspraCsrrip — k3Csa2Cp (3.4)
9O — kyCspraCsprip — k3CsnraCp — kCp (3.5)
d 22 = —k4Csr1Cr,0 — ksCpClhsyo (3.6)
dg% = k3Csm2Cp (3.7)
d% = k4Csm1Chy0 (3.8)
dg% = ksCpChyo (3.9)
£ = keCp (3.10)
ysm1 = Csm1 +esmn (3.11)
yp=Cp+ep (3.12)
ysmz = Csmz + s (3.13)
yp=Cp+ep (3.14)

Table 4. Initial conditions for center-point batch reactor operation atT = 40



State variable Units Initial condition

Csnn M 1
Cp M 0.05
Csm2 M 1.15
Csmip M 0
Cp M 0
Cro M 0.10
Cn M 0
Cro M 0
Crs M 0
Cra M 0

Table 5 shows the true kinetic coefficients used by Domagalski et al. for generating simulated data. These
parameter values were used in the current study to compute true kinetic and equilibrium coeflicients via
Arrhenius expressions:

Ki(T) = kigerexp (=2 (3= 7)) (17)

) = Koo (385 (3 - 22)) 19

where k; is the ith kinetic coefficient, R is the universal gas constant, T' is the temperature in K, andT,.s =
313.15 K = 40 °C is a reference temperature. In equation (18), K.q is the equilibrium coefficient for reaction
(1), and AH; is the reaction enthalpy. Table 6 provides measurement noise variances used in this study for
generating simulated data.?! Figure 2 shows one set of simulated old data generated using the values in

Table 5 and Table 6. As shown in the simulated true response in Figure 2, consumption of catalyst D is
initially very fast and then the catalyst gets released via reaction (2) as the product is formed.

Table 5. True values of the kinetic coefficients and equilibrium constant®

Units Value at 40 °C  E,; or AH; (J.mol_l)

kip  M7's™t 109 x 107 5.00 x 10*
Keq M™! 9.33 —1.00 x 10*

ko M-1s71 3.39x 1079 4.25 x 104
ks M~1s71 1.09 x 10796 9.00 x 10*
ka M~ts™1 1.17x107% 9.50 x 10*
ks M~1's~1 1.93x 1079 9.75 x 10*

ke st 1.87 x 10708 8.00 x 10*

Table 6. Measurement variances used for generating simulated data

Measured response (M) o7, (M?)

Ysmi 4.8 x 1072
YD 2.1 x 1074
YSM2 5.2 x 1072
yp 5.0 x 1072

The initial case study assumes that the system operates atT = T, = 40 , which results in seven parame-



ters requiring estimation (i.e., 0 = [kif, Keq, k2, k3, ka, ks, k‘@]T). These seven parameters lead to seven
columns in the scaled sensitivity matrix Z. Decision variables for the new experiments are initial concen-
trations for the reactants SM1, D, and SM2(i.e.,d = [Csm1,,Chy, CSM2O]T). Lower and upper bounds for
these decision variables are provided in Table 7. Note that, the four approaches (i.e., LO-LO, Bayes-LO,
LO-Bayes and Bayes-Bayes) that are compared in this initial case study also considered in an expanded case
study (reported in the Supplementary Information) where temperature is an additional decision variable
(35 < T < 45). Considering T as an additional decision variable results in a model with 14 parameters.
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Figure 2. Simulated data (symbols) and noise-free concentration profiles (curves) obtained at 40 °C using
experimental settings in Table 4, kinetic coefficients in

Table 5 and measurement errors in Table 6: a) SM1; b) D; ¢) SM2; d) P

In the initial case study, three new sequential experiments are designed one-at-a-time. In the first step,
one A-optimal experiment is designed and the parameters are estimated using both the old and the new
data. Next, these parameter estimates and all of the data obtained are used to design a second sequential
experiment. Finally, a third experiment is designed using parameter estimates and data from previous steps.

For comparison, three new experiments are designed all-at-once based on the old data in Figure 2 and
corresponding parameter estimates.

Table 7. Lower and upper bounds for the decision variables

Decision variables (M)

Lower bound (M)

Upper bound (M)

Csmi,
Chp,

Csmz,

0.10
0.01
0.10

1.5
0.5
1.5

Table 8 provides information about the user-specified prior parameter information used in three different



Cases. The prior parameter guesses and corresponding standard deviations were used in the Bayesian objec-
tive function for parameter estimation (equation (6)). This prior information is also used in LO parameter
estimation to obtain scaled sensitivity coefficients in Z (see equations (2) and (3)). As result, prior assump-
tions about parameters influence which parameters are estimated and which remained fixed at their initial
values. The three cases described in Table 8 were used to investigate the influence of the prior parameter
information on the quality of parameter estimates and experimental settings. For all three cases, parame-
ter initial guesséjo were selected randomly from normal distributions with true mean ¢; and true standard
deviationsg; (see Table 5). In Case I, the modeler specifies prior information that is quite accurate (i.e.,
prior parameter standard deviations are 1/5 of the true value), whereas in Case II, the modeler is less certain
about the initial parameter guesses. The selection rules in the third column of Table 8 for Cases I and II
prevent random selection of unrealistic negative parameter values and parameter values more than 3 stan-
dard deviations from the true parameter values. Case III is used to investigate whether the Bayesian or LO
approach to MBDOE and parameter estimation is more robust to misinformed prior information (i.e., when
modelers mistakenly believe that they know more about the plausible parameter values than is warranted).
In Case III, initial parameter guesses are further from the true values than the modeler believes.

Table 8. Selection of parameter initial guesses from normal distributions

Prior Distribution for the jth parameter Rules for selection of

Case I: Informative initial guess N(p: 05, 0: s, = %Qj) Discard any parameter ini
Case II: Moderately informative initial guess N(u: 0, 0: sp, = ?Qj) Discard any negative para
Case III: Misinformed initial guess N(p: 05, 0: so; = £0;) Select initial guess all fro:

Monte Carlo Simulation Results and Discussion

Case I: Results when informative parameter initial guesses are used

In this Case, 100 initial guesses for the seven parameters were selected as described in the first row of Table
8. Using each set of initial guesses and the simulated old data in Figure 2, preliminary values of the model
parameters were estimated using both Bayesian and LO approaches. All seven parameters were estimated
using the Bayesian approach, whereas subsets of parameters were estimated using the LO approach, with
remaining parameters fixed at their initial guesses. Using the LO approach, parameter ko was always ranked
as the most-estimable parameter, followed by Kcq, k1 andks (using the ranking algorithm in Table 2).
Parametersky, ks and kg were always left out of the ranked list. Using Wu’s 7. criterion, the parameter
subsetfs,n = [k2, Keq]Twas selected for estimation in all 100 simulated old data sets. Parametersk:y, ks,
k4, ks and kg were fixed at their initial values.

The preliminary parameter estimates obtained via Bayesian and LO estimation were then used to design
sequential A-optimal experiments using Bayesian and LO approaches. Details concerning how many and
which parameters tended to be estimated after each stage of sequential experimentation are provided in the
Supplementary Information.

Figure 3 provides boxplots for 100 values of the scaled sum of squared deviations between the estimated and
true parameter values:

SSDy = ( - etrHE)T 5! ( 0 — 9“%) (19)

for all four approaches when selecting three new A-optimal experiments, one at a time. The Bayes-LLO
approach is the superior approach on average, resulting in the smallest mean and median forSSDy after each
round of experimentation. The results in Figure 3 indicate that designing experiments using the proposed



modified Bayesian approach (i.e., with equation (16) as the objective function) is superior to designing
experiments using the LO approach (i.e., the Bayes-Bayes results are better than LO-Bayes, and the Bayes-
LO results are better than LO-LO). In addition, parameter estimation using the LO approach is superior to
the Bayesian approach (i.e., Bayes-LO is better than Bayes-Bayes, and LO-LO is better than LO-Bayes).

Figure 4 shows boxplots for 100 values of SSDy when designing three new A-optimal experiments all at once
for Case I. Bayes-LO is the superior approach and LO-Bayes is the worst approach. Comparing these results
with the results in Figure 3, it can be concluded that designing experiments one-at-a-time resulted in better
final parameter values than designing all three new experiments at once.



Figure 3 . Boxplots for 100 values of SSDy for Case I, when designing three sequential A-optimal experiments

1%t round
=T
\ ]
T
| ]
I
T [ :
| 1
1
i [ ————— i i
LO-LO Bayes-LO LO-Bayes Bayes-Bayes
2" round
T I
|
L == . .
LO-LO Bayes-LO LO-Bayes Bayes-Bayes

—

1

LO-LO

Bayes-LO LO-Bayes Bayes-Bayes

10



one at a time using LO-LO, Bayes-LO, LO-Bayes, and Bayes-Bayes approaches
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Figure 4. Boxplots for 100 values of SSDy for Case I, when designing three sequential A-optimal experiment
all at once using Bayes-Bayes, LO-LO, Bayes-LO, and LO-Bayes approaches

Computation times for both Bayesian and LO approaches to MBDOE were compared using MC simulations
for the Bayes-Bayes and LO-Bayes approaches. These two approaches use the same approach for parameter
estimation, but different methods for MBDOE, making it possible to isolate the effects of Bayesian and
LO approaches for MBDoE. Using a core i5 laptop with 8 GB RAM, the average computations time for
each Bayes-Bayes run was 51.2 s, which is faster than 89.9 s on average for a LO-Bayes run. Although this
difference is relatively small for the current case study, we anticipate that larger differences could occur for
larger models with more parameters and decision variables.

Case II: Results when moderately-informative initial guesses are available

Figure 5 compares boxplots for the 100 values of SSDyfor four approaches when designing three A-optimal
experiments one at a time using the prior parameter guesses in Case II. Similar patterns are observed
compared to Case I: as more experiments are designed and more data become available, the mean and
median values of boxplots forSSDy becomes smaller. However, since the parameter initial guesses are not
as good as in Case I, the parameter estimates in Case II are less accurate than in Case I. As in Case I, the
Bayes-LLO approach provides the best parameter values on average. A key difference between the results
in Case I and Case II is that the LO approach tended to estimate more parameters in Case II, due to
higher initial parameter uncertainties. Details concerning the frequency with which different parameters
were estimated are provided in the Supplementary Information.

Case III: Results when misinformed initial guesses are used

Figure 6 shows boxplots for 100 values of SSDyobtained for Case III, with the misinformed parameter initial
guesses described in the third row of Table 8. As expected, because parameter initial guesses were worse

11



than in Case I and II, the mean and median for SSDy are larger than Case I and II for all four approaches.
The Bayes-LO approach to designing experiments and estimating parameters was the best approach, even
though the modeler believed he or she had better prior knowledge about the parameters than was justifiable.
These results suggest that the Bayes-LO approach is somewhat robust to specification of misinformed prior
information. Note that the settings in Case II and Case III were also used to design three experiments
all-at-once instead of one at a time. As in Case I, the Bayes-LO approach was the best and the parameter
estimations resulting from the three-at-once experiments were not as good as those obtained using the
one-at-a-time approach. Details are provided in the Supplementary Information.
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Figure 5. Boxplots for 100 values of SSDy for Case II, when designing three sequential A-optimal experiment

one at a time using LO-LO, Bayes-L.O, LO-Bayes, and Bayes-Bayes approaches



Cases I, IT and III were also repeated using the extended 14 parameter model that arises (due to activation
energies and reaction enthalpy) when the temperature is included as an additional decision variable. The
same trends were observed as for the 7 parameters model, indicating that the Bayes-LO is the best of the
four approaches studied. Details are provided in the Supplementary Information.

Conclusions

A simple Bayesian approach is proposed for the sequential model-based design of experiments (MBDoE)
when the FIM is noninvertible. The results for the proposed Bayesian approach were compared with a
leave-out (LO) approach developed in previous studies. In addition, the effectiveness of Bayesian and LO
approaches for parameter estimation were also compared, so that four different approaches were investigated
(i.e., Bayes-Bayes, LO-LO, Bayes-LO, and LO-Bayes) were investigated. These approaches were tested using
simulated data generated from a 7-parameter isothermal pharmaceutical production model and a correspond-
ing 14-parameter non-isothermal model. Three different cases were considered wherein the modeler specified
different prior information about the parameters. The results indicate that the Bayes-LO approach (i.e., a
Bayesian approach for MBDoE combined with a LO approach for parameter estimations) is superior to the
three other approaches. The proposed Bayesian approach for designing experiments consistently provided
superior experiments for use in parameter estimation compared with the LO approach. However, after new
experimental data had been obtained, the LO approach for parameter estimation consistently provided pa-
rameter values that were closer, on average, to their true values than parameter estimates obtained from
Bayesian estimation. Promising simulation results obtained using misspecified prior parameter knowledge
indicated that the Bayes-LLO approach was somewhat robust to misinformation for the current case study.
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Figure 6. Boxplots for 100 values of SSDy for Case 111, when designing three sequential A-optimal experi-
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