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Abstract

Prediction models are extensively used in numerous areas including clinical settings where a prediction model helps to detect or

screen high-risk subjects for early interventions to prevent an adverse outcome, assist in medical decision-making to help both

doctors and patients to make an informed choice regarding the treatment, and assist in healthcare services with planning and

quality management. There are two main components of prediction modeling: model development and model validation. Once

a model is developed using an appropriate modeling strategy, its utility is assessed through model validation. Model validation

provides a true test of a model’s predictive ability when the model is applied on an independent data set. A model may

show outstanding predictive accuracy in a dataset that was used to develop the model, but its predictive accuracy may decline

radically when applied to a different dataset. In the era of precision health where disease prevention through early detection is

highly encouraged, accurate prediction of a validated model has become even more important for successful screening. Different

clinical practice guidelines also recommend incorporating only those prediction models in clinical practice that has demonstrated

good predictive accuracy in multiple validation studies. Our purpose is to introduce the readers with the basic concept of model

validation and illustrate the fundamental steps and procedures that are necessary to implement model validation.
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INTRODUCTION

Prediction models also known as clinical prediction models are mathematical formula or equation that
expresses the relationship between multiple variables and helps predict the future of an outcome using
specific values of certain variables. Prediction models are extensively used in numerous areas including
clinical settings and their application is large. In clinical application, a prediction model helps to detect
or screen high-risk subjects for asymptomatic disease for early interventions, predict a future disease to
facilitate patient-doctor communication based on more objective information, assist in medical decision-
making to help both doctors and patients to make an informed choice regarding the treatment, and assist
in healthcare services with planning and quality management.

While specific details may vary between prediction models, the goal and process of developing prediction
models are mostly similar. Conventionally, a single prediction model is built from a dataset of individuals
in whom the outcomes are known and then the developed model is applied to predict outcomes for future
individuals. There are two main components of prediction modeling: model development and model vali-
dation. Once a model is developed using an appropriate modeling strategy, its utility is assessed through
model validation. Investigators want to see through validation how the developed model works in a dataset
that was not used to develop the model to ensure that the model’s performance is adequate for the intended
purpose.
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Model validation provides a true test of a model’s predictive ability when the model is applied on an
independent data set. A model may show outstanding predictive accuracy in a dataset that was used
to develop the model, but its predictive accuracy may decline radically when applied to a different dataset.
In the era of precision health where disease prevention through early detection by monitoring health and
disease based on an individual’s risk is highly encouraged, accurate prediction in model validation has become
even more important for successful screening.

There are numerous clinical prediction models available to serve different purposes, however, only a few found
their application in clinical practice. One reason for that is lack of their validation, particularly external
validation. External validity establishes generalizability of a prediction model. Generally, accuracy of a pre-
diction model degrades from the sample in which the model was first developed to subsequent application.
For a prediction model to be generalizable, the accuracy of the model need to be both reproducible and
transportable. A prediction model that cannot predict outcomes accurately in a new sample is useless. Clin-
icians did not find confidence and trust to use prediction models in their practice that are not well validated.
Despite its importance being recognized, external validation of prediction models is not common, which has
largely contributed to failure to translate prediction models into clinical practice. Different clinical practice
guidelines recommend incorporating only those prediction models in clinical practice that has demonstrated
good predictive accuracy in multiple validation studies.

Model validation involves different aspects and our objective is to discuss those aspects in this paper to
provide the readers with a basic understanding and importance of the topic. The concept of model validation
is statistical. However, we tried to present a nontechnical discussion of the topic in plain language. The
information provided in this paper can be helpful for anyone who wishes to be better informed, have more
meaningful conversations with data analysts about their project or apply the right model validation technique
given that they have advanced training in statistics. We have arranged our discussion as follows. We begin
the discussion with defining model validation. Then we have outlined the major steps one needs to follow
in model validation. Within the model validation steps, we discussed different ways of model validation
together with their strengths and limitations which we named “model validation procedures” and how to
assess the performance of a validated model which we named “model performance assessment”.

METHODS

The concept of model validation

Model validation is the process of demonstration that the model can reproduce its performance with rea-
sonable accuracy to a different population or setting that was not used to develop the model. The purpose
of model validation is to demonstrate that the model is accurate for the intended population (dataset) for
whom the model was developed and performs well in other populations (datasets) which were not used to
develop the model.

Preferably, a model should be evaluated on samples that were not used to develop the model so that a model’s
effectiveness can be assessed unbiasedly. However often models are developed in one part of the sample and
evaluated in the other part of the sample or the same sample is used through resampling to develop and
evaluate the model. Although this kind of model evaluation belongs to model validation formally known
as internal validation, this does not guarantee that the model will perform well in a different dataset from
a different population. Evaluation of a model’s performance in an entirely different population is formally
known as external validation and is always advised to establish the generalizability of the model. Within
model validation, there are different types each with its advantages and disadvantages. Once a model is
validated to a different sample or population, its performance needs to be assessed. There are also different
ways to assess the performance of a model. We discuss the types of model validation and how to assess the
performance of a validated model within the model validation steps.

Steps of model validation

To validate a prediction model investigators need to follow a few basic steps. We broadly classify the steps

2
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of model validation into two main categories (Figure 1):

1. Apply originally developed model into a different dataset that was not used to develop the model which
we will call “model validation procedures”

2. Asses the performance of the model in the new dataset which we will call “model performance assess-
ment”

Model validation procedures

A model can be validated either internally using the same data or data source or externally using new data
from a different data source. It is important to separate these two types of validation1.

Internal Validation

“Internal validation assesses validity for the setting where the development data originated from”2. Internal
validity is also called “reproducibility” which means the ability to produce accurate predictions among
individuals not included in the development of the model but from the same population3. In internal
validation, generally, the dataset is divided into two categories. One category is called the ”training” dataset,
which is used to create the model, while the other category is called the ”test” or “validation” dataset, which
is used to assess the model performance. Internal validation can be performed in different ways. We discuss
here some of the major internal validation procedures.

Apparent Validation.

In apparent validation, the model is validated in the same sample where the model was developed; as a
result, it provides an optimistic performance of the model. This leads to a biased assessment of the model’s
performance as the same 100% of data are used both to build the model and to test the model2.

Split-sample Validation.

Split-sample validation consists of dividing the sample into two parts, with model development in one part
of the sample while assessing model performance in the other part of the sample. The splitting is done at
random and typical splitting’s are 1/2:1/2 or 2/3:1/3. For example, if 1/2:1/2 split sample is used then the
model is developed in 50% of the data and the model is evaluated in the other 50% of the data.

Split-sample is an old classical approach of model validation with several limitations2. As splitting is done
fully at random there could be an imbalance concerning the distribution of predictors and outcome in the
sample2. Randomly splitting the data does not guarantee that the divided data is representative of the
target population. This problem is serious with small samples and a predictor with rare events2. One way
to overcome this issue is to stratify the sampling by the outcome and relevant predictors2. Another issue
with the split-sample method is, it provides less stable results as only part of the data is used to model
development. Also, small validation data provide an unreliable assessment of model performance that can
be even biased because we want to know the model’s performance in the full data set, but the assessment
was performed only in a part2.

Due to its several drawbacks, split-sample validation is often treated as an inefficient approach of model
validation. The performance of this procedure is reasonable when the sample size is large according to some
simulation studies2. However, it is suggested to use other efficient model validation procedures to get reliable
results.

K-Fold Cross-Validation.

‘K-fold cross-validation’ (Figure 2) and ‘bootstrapping’ (Figure 3) are two popular methods that improve
upon the split-sample method and produce better results in terms of bias and variability. K-fold cross-
validation and bootstrapping are also better in situations where the sample size is small and when external
validation is not readily available.
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Cross-validation is a resampling procedure primarily used to evaluate the performance of prediction models
on unseen data set, particularly, when the data set is small. The purpose is to see how the model performs in
general when used to predict data that were not used to develop the model. K-fold cross-validation contains
only one parameter ”k” that refers to the number of groups (folds) that a given data set is to be split
into. If a specific value for ”k” is chosen, such as k = 10, then accordingly, the procedure is called 10-fold
cross-validation.

In k-fold cross-validation, each observation in the data set is allotted to a specific subsample and remains
in that subsample for the entire duration of the procedure. K-fold cross-validation starts with randomly
partitioning the original sample into k roughly equal size subsamples. Then, only one subsample out of this
k subsamples is kept as the validation data to test the model, and the remaining k-1 subsamples are utilized
as training data to derive the model. A total of k times (the folds) this process is replicated, with each of
the k subsamples used only once as the validation data. Finally, the results from the k-fold cross-validation
run are summarized and a single estimate is produced by averaging (or otherwise combining) the k results
from the folds.

Choosing an appropriate value for K is important to avoid misrepresentation of the performance of the
model4. While choosing the value of k we need to be careful that each subsample (particularly, validation
set) of data is large enough to reasonably represent the whole data set. More splits will reduce the size
of the validation set and we will not have sufficient sample in the validation set to fairly and confidently
evaluate models performance4. On the other hand, too few splits will not provide enough trained models to
evaluate4. In addition, a higher k value is associated with less bias (the difference between the estimated
and true values of performance) but more variability (performance of the model may change according to
the data set used to fit the model) and computation. On the other hand, a lower k value is associated with
more bias but less variability and computation. Though there is no formal rule, usually k is chosen between
5 or 104. Often K = 5 or 10 provides a good compromise for this bias-variance tradeoff4.

One disadvantage of k-fold cross-validation is its high variance, which makes it less attractive4. However,
with a large training set with multiple repetitions of the whole k-fold validation-process (e.g., 50 times 10-fold
cross-validation) provides true stable results that effectively increase the precision of the model estimates
while still maintaining a small bias2. K-fold cross-validation has the big advantage that all observations are
utilized for both derive and validate the model, with each observation is used only once for validation. As a
result, this process has less chance to succumb to a biased division of the data.

Leave-One-Out Cross-Validation (LOOCV).

This is another version of k-fold cross validation where k = n, the number of data points. In this method,
each time, only one data-point in the original dataset is held-out for model validation while the remaining
data points are used to build the model. As a result, this process runs as many times as the number of
data-points in the sample. This method provides negligible bias as the almost entire dataset is used for
building the model, which is its advantage. However, this method has the major disadvantage that only
one data point is used for validating the model every time, resulting in a high variance in the estimates
of the model’s performance, particularly when multiple outliers in the dataset. In addition, this method is
computationally very intensive, particularly when the dataset is large4.

Bootstrap Validation.

The bootstrap method is a resampling technique often used to estimate statistics on a population as well
as validate a model by sampling a dataset with replacement. The bootstrap method allows us to use a
computer to mimic the process of obtaining new data sets so that the variability of the estimates can be
assessed without creating additional samples. Instead of repeatedly obtaining independent data set from
the population, which is often not realistic, in bootstrapping, distinct data sets are obtained by repeatedly
doing sampling from the original data set with replacement. The idea behind bootstrapping is the original
observed data will take the place of the population of interest, and each bootstrap sample will represent a
sample from that population.

4
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Bootstrap samples are of the same size as the original sample and drawn randomly with replacement from
the original sample. In a with replacement sampling, after a data point (observation) is selected for the
subsample, it is still available for further selection. As a result, some observations represented multiple times
in the bootstrap sample while others may not be selected at all. Because of such overlaps with original data,
on average almost two-thirds of the original data points appear in each bootstrap sample4. The samples that
are not included in a bootstrap sample are called “out-of-bag” samples. When performing the bootstrap, two
things must be specified: the size of the sample and the number of repetitions of the procedure to perform.
A common practice is to use a sample size that is equivalent to the original data set and a large number of
repetitions (50-200) to get a stable performance2, 4.

In the bootstrap method, a prediction model is developed in each bootstrap sample and measures of predictive
ability such as C-statistic are estimated in each bootstrap sample. Then these models from bootstrap data
are applied to the original dataset to evaluate the model and estimate the predictive measure (C-statistic)
of these bootstrap models in the original data. The difference in performance in the predictive measure
indicates optimism, which is estimated by averaging out all the differences in predictive measures. Finally,
this estimate of optimism is subtracted from the performance of the original prediction model developed in
the original data to get an optimism-adjusted measure of the predictive ability of the model2.

Bootstrap samples have significant overlap with the original data (roughly two-third) which causes the
method to underestimate the true estimate. This is considered a disadvantage of this method. However,
this issue can be solved by performing prediction on only those observations that were not selected by the
bootstrap and estimating model performance. Bootstrapping is more complex to analyze and interpret due
to the methods used and the amount of computation required. However, this method provides stable results
(less variance) than other methods with a large number of repetitions.

It is very obvious that each of the internal model validation techniques has advantages and disadvantages
and no one method is uniformly better than another4. Researchers have a different opinion on choosing
the appropriate method for internal model validation. Several factors such as sample size, finding the best
indicators of a model’s performance and choosing between models were asked to consider before making the
choice4.

The above-mentioned procedures for model validation pertain to internal validation, which does not examine
the generalizability of the model. To ensure generalizability, it is necessary to use new data not used in the
development process, collected from an appropriate (representative) patient population but using a different
set of data.

External Validation

The reliability and acceptability of a prediction model largely depend on how well it performs in a validation
cohort, outside of the derivation cohort where the model was developed. Internal validation of prediction
models is often not sufficient for generalizability, and external validation is necessary before implementing
prediction models in clinical practice. External validation of models is often considered essential to support
the general applicability of a prediction model as it addresses transportability1, 2. Transportability requires
the model to perform accurately in predicting data drawn from a different but plausibly related population
or in data collected by using a little different method than those used in the development sample3. External
validation requires data collected from a similar group of patients in a different setting and aims to address
the accuracy and performance of a prediction model in a different patient population. These data (sample)
are fully independent of the development data and originate from different but similar patients. The gen-
eralizability of a model becomes stronger when the model is externally validated multiple times and in a
more diverse setting2. This is the reason perhaps why the Framingham Risk Score (FRS) for cardiovascular
disease (CVD) is so widely used in the clinical setting as the model was externally validated many times
with many different settings.

Most studies evaluating prediction models focus on the issue of internal validity as opposed to the important
issue of external validity. Internal validation does not guarantee generalizability, and thus external validation

5
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is necessary before implementing prediction models into clinical practice.

External validation can be assessed in different ways:

1. Temporal validation (validation in more recent individuals)
2. Geographical validation (validation in other places)
3. Fully independent validation/Strong external validation (by other investigators at other sites)

Temporal Validation.

In temporal validation, the model is typically validated in more recent individuals. The purpose of such
validation is to make sure that the model maintains its accuracy when it is tested in cohorts in different time
periods. A model developed way back (say 20 years ago) may not work in current patients (e.g., change
in risk factor distribution and availability of large dataset on many risk factors). Temporal validation can
be easily achieved just splitting the data into two parts. Develop the model in one part that contains early
treated patients and validate the model to assess its performance in another part that contains patients
that are more recent2. Temporal validation can also be achieved through the prospective application of the
developed model in specifically collected cohort2. For example, a model can be developed in a group of
patients between 2005 and 2010 and the same model can be validated in a different group of patients from
the same cohort between 2012 and 2015.

Geographic Validation.

In geographic validation, the model is validated in a different location that was not used to develop the
model. The purpose of geographic validation is to confirm that the model remains accurate when it is tested
in data from other locations. Although it may be questioned whether a model developed in another location
will work in a new location that is completely different. Geographical validation can be achieved by applying
and assessing the performance of a developed model to a different site within the same region or a different
cohort from a different region. For example, a model developed in the USA for predicting hypertension can
be validated in a similar Canadian cohort.

Fully Independent Validation.

In fully independent validation, model validation is performed in data collected by independent investigators,
usually at a different location. Generally, the validation sample is drawn from a different time. It is important
to establish that the model is equally accurate when applied by independent investigators, as they are unlikely
to study identically selected patients and data collecting tools3. In addition, the definition of predictors and
outcomes and study participants selection may be slightly different compared with the development setting
in fully independent validation2.

Full independent validation often shows poor results (more unfavorable) than temporal or geographical
validation. There could be several reasons for that. Some of those reasons are related to the original model’s
development issues such as inadequate model development strategy, small sample size, and suboptimal
statistical analysis. It also happens frequently that all the variables used to build the original model may
not be available at validation data, which eventually affects the model’s performance in validation data. In
addition, a true difference between development and validation samples may cause poor validation results.
Fully independent external validation of a model is often more difficult than anticipated. However, if a
model can demonstrate adequate performance in a fully independent validation in a different setting, then
the results of this model’s performance are more authentic, acceptable and generalizable.

Model performance assessment

Once a prediction model is developed then it needs to be validated to see or quantify how good the predictions
from the models are, often referred to as model performance. There are different methods and metrics to
assess the performance of a prediction model. These methods and metrics depend on the type of modeling
technique used in model developing which again largely depends on the outcome of interest. We will restrict
our discussion of model performance assessment for binary or survival outcomes, common in health research.

6
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For binary and survival outcomes, the most commonly used measures include the Brier score to indicate
overall model performance, the concordance statistic (also known as the C-statistic) for discriminative ability,
and goodness-of-fit statistics for calibration.

Brier Score.

The model’s overall performance is quantified by considering the distance between the actual outcome and
the predicted outcome with better models have smaller distances5. The Brier score is used to calculate the
model’s overall performance and is measured by calculating the squared differences between actual binary
outcomes and predictions calculated by the model. The range of values that the Brier score of a model can
take lies between 0 and 0.25 with 0 indicating a perfect model and 0.25 indicating a non-informative model
with only a 50% incidence of the outcome2, 5. Brier score for survival outcome is not possible to calculate
directly because of censoring. However, it is possible to calculate it indirectly defining a weight function
that considers the conditional probability of being uncensored during the time. One disadvantage of the
Brier score is that its interpretation depends on the incidence of the outcome with lower (higher) incidence
corresponds to lower (higher) Brier score2.

Discrimination.

The discrimination is defined as the model’s ability to distinguish between participants who do or do not
experience the event of interest (e.g., disease outcome such as hypertension). A good prediction model can
accurately discriminate between those with and without the outcome5. C-statistic, which is equal to the
area under the receiver operating characteristic (ROC) curve for binary outcomes, is commonly employed to
assess discrimination. ROC curve plots the sensitivity against (1 – specificity) for consecutive cutoffs for the
probability of an outcome. The value of a C-statistic (area under ROC curve) points out to the probability
that a randomly selected subject who experienced the outcome will have a higher predicted probability of
having the outcome occur compared to a randomly selected subject who did not experience the event. The
C-statistic can range from 0.5 to 1, with higher values indicating better predictive models. A C-statistic of
0.5 indicates the model’s performance in predicting an outcome is no better than the random chance while a
C-statistics of 1 indicates the model perfectly distinguishes those who will experience a certain outcome and
those who will not. Generally, the C-statistic of a prediction model ranges from 0.6 to 0.85. A model with
a C-statistic ranging from 0.70 to 0.80 is considered adequate, while a range of 0.80 to 0.90 is considered
excellent6.

For survival data, an extension of C-statistic called Harrell’s C-statistic is suggested which indicates the
proportion of all pairs of subjects who can be ordered such that the subject who survived longer will have
the higher predicted survival time than the subjects who survived shorter, assuming that these subject pairs
are selected at random. Although C-statistic is insensitive to outcome incidence, one disadvantage of C-
statistic is, its interpretation is based on an artificial situation assumption that we have a pair of patients,
one with and one without the outcome.

Calibration.

The agreement between observed outcomes and predictions made by the model is referred to as calibration1.
Model calibration measures the validity of the predictions and determines whether the predictions based on
the risk prediction model align with what is observed within the study cohort. For example, if we predict
a 20% risk that a person will develop hypertension, the observed frequency of hypertension should be 20
out of 100 people with such a prediction. Calibration plot is a method that visually inspects calibration
and presents plot for predicted against observed probabilities. It also uses the Hosmer-Lemeshow test to
assess calibration. In a calibration plot, predictions are plotted on the x-axis and the observed outcome on
the y-axis. In the y-axis, the plot contains only 0 and 1 values for binary outcomes. Different smoothing
techniques (e.g., the loess algorithm) can be employed to estimate the observed probabilities of the outcome
for the predicted probabilities. Perfect predictions should be on the 45° line suggesting that predicted risks
are correct. An alternative assessment of calibration is to categorize predicted risk into groups (e.g., deciles)
and assess whether the event rate corresponds to the average predicted risk in each risk group. The Hosmer-

7
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Lemeshow goodness-of-fit-test makes the plot of a graphical illustration to assess whether the observed event
rates match expected event rates in subgroups of the model population.

For survival data, the calibration is usually assessed at fixed time points2. Within each time point, survival
rates are calculated by the Kaplan-Meier method for a group of patients. Then this observed survival is
compared with the mean predicted survival from the prediction model2.

Besides the above-mentioned major measures of model assessment, there are other measures occasionally
used to assess a model. Although calibration and discrimination are considered the most important aspects
to assess a model, they did not provide any assessment regarding the clinical usefulness of a model. Clinical
usefulness assessment helps to understand the ability of a model to make better decisions compared to a
situation when the model was not used. The measures associated with clinical usefulness are generally related
to a cutoff, a decision threshold of the model, which classify peoples into low and high-risk groups balancing
the likelihood of benefit and likelihood of harm. Net benefit (NB) is one such measure that can be used to
assess the clinical usefulness of a model.

CONCLUSION

Validation of a prediction model is extremely important as it provides model applicability in different po-
pulations. The model’s internal validation is quite common. However, to make a model generalizable and
applicable in clinical practice, the model must need to be externally validated. Models that are externally
validated multiple times with sufficient good performance are reliable and often recommended in clinical
guidelines for implementation. Although, there are many prediction models only a few with external vali-
dations. We suggest investigators focus not only on just prediction model development but also on external
validation of their developed model.
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FIGURE LEGENDS

Figure 1. Model Validation Steps

Figure 2. 5-Fold Cross-Validation

Figure 3. A graphical illustration of the bootstrap process on a hypothetical small sample containing n = 3
observations on two variables X and Y. Three bootstrap samples containing n = 3 observations drawn with
replacement from the original data set. Finally, each bootstrap sample is used to obtain the prediction
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