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Abstract

Forests reduce snow accumulation on the ground through canopy interception and subsequent evaporative losses. To under-
stand snow interception and associated hydrological processes, studies have typically relied on resource-intensive point scale
measurements derived from weighed trees or indirect measurements that compared snow accumulation between forested sites
and nearby clearings. Weighed trees are limited to small or medium sized trees and indirect comparisons can be confounded
by wind redistribution of snow, branch unloading, and clearing size. A potential alternative method could use terrestrial lidar
(light detection and ranging) because three-dimensional lidar point clouds can be generated for any size tree and can be utilized
to calculate volume of the intercepted snow. The primary objective of this study was to provide a feasibility assessment for
estimating snow interception mass with terrestrial laser scanning (TLS), providing information on challenges and opportunities
for future research. During the winters of 2017 and 2018, intercepted snow masses were continuously measured for two model
trees suspended from load-cells. Simultaneously, autonomous terrestrial lidar scanning (ATLS) was used to develop volumetric
estimates of intercepted snow. Multiplying ATLS volume estimates by snow density estimates (derived from empirical models
based on air temperature) enabled comparison of predicted vs. measured snow mass. Results indicate agreement between
predicted and measured values (R2 [?] 0.69, RMSE [?] 0.91 kg, slope [?] 0.97, intercept [?] -1.39) when multiplying TLS snow
interception volume with a constant snow density estimate. These results suggest that TLS might be a viable alternative to
traditional approaches for mapping snow interception, potentially useful for estimating snow loads on large trees, collecting

data from hazardous or remote terrain, and calibrating snow interception models to new forest types around the globe.

1. Introduction

The hydrology of snow dominated forests is controlled by interactions of mass and energy fluxes between
snow and forest structural elements. As forest cover increases, snow accumulation on the ground is typically
reduced because of canopy snowfall interception and subsequent sublimation, which can account for as much
as 60% of the cumulative snowfall depending on forest type, duration of snow storage in the canopy, and
seasonal hydrometeorological conditions (Hedstrom & Pomeroy 1998; Molotch et al., 2007). The sensitive
connection between forest structure and snow interception therefore has important implications for the
hydrology in any region around the globe where the major proportion of total water input comes from snow.
Understanding this relationship is increasingly important with widespread observed and projected shifts from
snow to rain (Klos et al., 2014), changes in the frequency of winter rain-on-snow events (Floyd & Weiler,
2008; Musselman et al., 2018), and changes in forest vegetation due to fire (Westerling, 2016), drought (Allen
et al., 2010), insects (Bentz et al., 2010; Frank, Massman, Ewers, & Williams, 2019) and other disturbance
processes that might be altered by a changing climate and/or forest management.

While the importance of snow interception has long been acknowledged, it is also difficult to measure, map,
and model. Direct measurement has typically been limited to resource-intensive point measurements derived
from weighed trees, which are generally limited to small or medium trees (Hedstrom & Pomeroy, 1998;
Knowles, Dettinger, & Cayan, 2006; Storck et al., 2002; Suzuki & Nakai, 2008) or tree branches (Brundl,



Bartelt, Schneebeli, & Fluhler, 1999; Schmidt & Gluns, 1991). Indirect measurements have compared snow
accumulation between forested sites and nearby clearings. Although indirect measurements have advantages
(e.g. estimating spatial variance), the accuracy has long been questioned (e.g., Miller 1964) and the measure-
ments can be confounded by wind redistribution of snow, branch unloading, and reference site size (Moeser,
Stahli, & Jonas, 2015).

A potential novel method could use terrestrial lidar (TLS) because three-dimensional lidar point clouds,
based on the laser return-time/distance relationship, can be generated for any size tree. The point clouds
can be transformed into an a-shape (convex hull with a polyhedral surface approximating the shape and
volume the tree), from which volumes can be calculated (Edelsbrunner, 1994; Lafarge, Pateiro-Lopez, Possol
& Dunkers, 2014). The o-shape convexity (i.e. o-convexity) (Rodriguez-Casal, 2007) is tunable according to
TLS spatial resolution and study objectives — be it calculating volumes of fine-scale structures like branches
or smoothed-over structures like snow-laden trees. Intercepted snow volume can be estimated by subtracting
snow-free tree volume from snow-on tree volume. Furthermore, novel autonomous terrestrial laser scanning
(ATLS) systems (Adams et al., 2014; Eitel et al., 2013) could enable timeseries characterization of seasonal
dynamics associated with snow interception and unloading. Ultimately, TLS based snow interception may
have a number of advantages over traditional methods, including: spatially explicit estimation of snow
interception for different aspects or portions of tree canopies, data collection in difficult to access terrain
(Adams, Bauer, & Paar, 2014) known to be important contributors to water budgets (Biihler, Adams, Bosch,
& Stoffel, 2016; Hood & Hayashi, 2010), and providing time-efficient data for calibration of emerging aerial
lidar (ALS)-based snow interception models to specific forest types (Deems et al., 2013; Moeser et al., 2015;
Painter et al., 2016).

The objectives of this study were twofold: (1) Test the feasibility of using ATLS to directly map intercepted
snow mass and (2) Determine the effect of o-convexity on ATLS-derived snow mass estimates. In doing so,
this study provides a preliminary feasibility assessment for estimating snow interception mass with terrestrial
laser scanning, providing information on challenges and opportunities for future research.

2. Methods
2.1 Study Site

Two model hanging trees measuring 1.83 meters (m) in height (hereafter referred to “left tree” and “right
tree” - see Figure 1) were installed prior to winter 2017 following established approaches outlined in Hedstrom
and Pomeroy, 1998. The trees were off-the-shelf Christmas trees, bilaterally symmetrical and not representing
a specific species. Artificial trees were utilized to avoid desiccation and interception estimates that may be
affected by progressive needle drop. The trees were installed at the University of Idaho McCall Field Campus
(44.9353472°, -116.0820167°) in the mountains of west-central Idaho, which receives an average of 3.4 m of
snow fall (depth) per year at 1528 m elevation (Western Regional Climate Center, 2016).

2.2 Field Measurements

Load cells measured strain gauge output (mV/V), an electrical signal which is proportional to the applied
excitation voltage, from the hanging trees in one-minute intervals. Known masses were hung from the load
cells to verify measurement accuracy and to develop a calibration equation (mass = 30.18 * mV/V — 4.6917)
which converted strain gauge output to kg. The originating mass of a snow-free tree at the beginning of each
winter was subtracted from subsequent measurements to calculate snow masses for each scan.

An ATLS scanned one side of the trees at a distance of 6.2 m and produced two high resolution point
clouds per day (1.12 c¢cm spot size and 0.20 cm point spacing at 10 m) (Figure 1b). The ATLS employs a
rugged time-of-flight laser rangefinder (optoNCDT ILR 1191 with 905 nm near infrared laser and 1.7 mrad
beam divergence; Micro-Epsilon Messtechnik GmbH & Co. KG, Ortenburg, Germany) designed for harsh
environments (see Eitel et al., 2013 for more detail). The ATLS completed one scan in 13 hours.

Assuming each tree canopy to be bilaterally symmetrical and circular in shape, and given a known canopy
diameter, distance from scanner to canopy perimeter, and location of the ATLS, trigonometric calculations



yielded 47.7% for the percent of tree canopy perimeter “seen” by the ATLS. Rounded to 50% for the analyses,
snow masses obtained from the load cells were therefore divided by two and averaged across each ATLS scan
duration to allow for comparison with ATLS data.

2.8 Lidar volume estimates

The ATLS point clouds were transformed into “alpha-shape” structures in R using the alphashape3d R
package (Lafarge, Pateiro-Lopez, Possol and Dunkers, 2014). An alpha-shape structure is a three-dimensional
convex hull generated from a point cloud, approximating the shape and volume of the scanned structure.
The convex hull is fitted with Delauney Triangulation (drawing triangles between points so that there is
no overlap between triangles). The a-convexity parameter (o) (Edelsbrunner & Mucke, 1994) is selected
by the user, corresponding to data resolution and units of the input data. An o-convexity parameter of 1
corresponds to the convex hull; the closer o is to zero, the more triangle borders are deleted to make a better
fitting, flexible and concave hull (see Figure 3). A sensitivity analysis was conducted by comparing measured
vs. ATLS derived snow mass (see section 2.5) with o = 0.010, 0.015, 0.020, 0.025, and 0.030 m — a range
deemed appropriate given the ATLS spatial resolution (see section 2.2). This permitted the selection of o
that resulted in the best agreement between observed and TLS based estimates of intercepted snow mass.
The originating volume of a snow-free tree at the beginning of each winter was subtracted from subsequent
measurements to calculate snow volumes for each scan.

2.4 Snow density estimates

Fresh snow density (kg/m3) was estimated using hourly air temperatures (??; 0.1° C resolution) from a
meteorological monitoring sensor equipped with a radiation shield (VP-4, METER, Pullman, WA) positioned
on a pole directly above the ATLS. Several methods of estimating fresh snow density from air temperature
were tested, including:

o (Brazenec) = constant density of kg/m3 estimated for the Rocky Mts. [1] (Brazenec, 2005)
¢ (Diamond-Lowry) = 119 + (6.48*??) [2] (Diamond & Lowry, 1953)

¢ (LaChapelle) =) 50 +1.7(Ta +15)1.5[3] (LaChapelle, 1962)

e (Hedstrom-Pomeroy) = 67.92+51.25?(77/2.59) [4] (Hedstrom & Pomeroy, 1998)

Mean fresh snow density was calculated for each ATLS scan time interval (13 hours). Estimates of snow
interception were calculated by multiplying the laser derived snow volumes (m3) with fresh snow densities
derived from equations [1-4] (kg m-3).

2.5 Statistical analysis

The precision and accuracy of laser derived estimates of snow interception (objective 1) was determined by
fitting a simple linear regression model in R (R Core Team, 2013) between ATLS derived intercepted snow
mass in kg (independent variable) and load cell derived intercepted snow mass in kg (dependent variable)
(Pinieiro, Perelman, Guerschman, & Paruelo, 2008). Following common practice when using convex hull
approaches (e.g., Lafarge, Pateiro-Lopez, Possol & Dunkers, 2014), a sensitivity analysis to determine the
effect of a-convexity on ATLS derived snow mass estimates (objective 2) was performed by comparing R2
(goodness-of-fit), Root Mean Square Error (RMSE) in kg, and regression intercept/slope estimates (indicative
of model bias) for each model combining alternative o levels (see section 2.3) and snow density estimation
methods (see section 2.4). The optimal model was determined by selecting, first, the best performing snow
density estimation method and, secondly, the o level that produced the least under/over estimation in ATLS
based mass predictions (i.e. closest to 1:1 line) and lowest RMSE.

3. Results

A total of 115 complete ATLS scans were recorded for the left tree in the first winter between January
and April; a total of 69 complete ATLS scans were recorded for the left tree in the second winter between
November and March. A total of 83 and 69 scans were recorded for the right tree over the same time periods.



Discrepancies in sample size between the left and right tree were related to incomplete ATLS scans in which
scanner malfunction truncated a portion of the scene(e.g., see Figure 1b).

Data exploration using results from the left tree revealed that measured snow interception (averaged across
multiple complete scans) in the first winter averaged 3.19 kg (1.0% of season total), with a standard deviation
of 4.59 kg and a maximum of 16.95 kg (4.8% of season total). During the second winter, measured snow
interception for the left tree averaged 3.31 kg (2.3% of season total), with a standard deviation of 2.76 kg
and a maximum of 10.19 kg (4.5% of season total). Estimated mean fresh snow densities using equations
[1-4] for the left tree in both winters are summarized in Table 1. Density values are similar to Mair et al.
(2016), in which estimates produced by equation [2] approximated the Brazenec (2005) constant, estimates
produced by equation [3] were higher than the constant, and estimates produced by equation [4] displayed
a wider range.

Sensitivity analyses (Table 2) using data spanning both winters for both trees demonstrated that the fresh
snow density constant [1] (Brazenec, 2005) consistently produced higher R2 (model fit) and lower RMSE (un-
explained variance) than empirical variable-density equations [2] (Diamond & Lowry,1953), [3] (LaChapelle,
1962), and [4] (Hedstrom & Pomeroy), in that order. An o-convexity parameter of o = 0.025 was selected
for further analysis because, at this level, regressions utilizing the density constant produced slopes close to
1.00 (0.97 for the left tree and 1.07 for the right tree), calibrating the two methods (see Figure 2). Under-
estimation in TLS based mass estimates is evident with o = 0.010, 0.015, and 0.020 m; overestimation in
TLS based mass estimates is evident with o = 0.025 and a = 0.030 m (see slopes in Table 2). Simple linear
regression utilizing the density constant and o-shape resolution of 0.025 m yielded R2 = 0.71 / RMSE =
1.06 kg for the left tree and R2 = 0.69 / RMSE = 0.91 kg for the right tree. Intercepts of -1.39 for the left
tree and -1.34 for the right tree further illustrate model bias.

4. Discussion
4.1 The effect of snow density and scan duration on model performance

To our knowledge, this is the first study that explores the suitability of high resolution, automated terrestrial
lidar to directly estimate canopy snow interception, with direct comparison to the established hanging tree
method (Hedstrom & Pomeroy, 1998). The most precise proxies for measured snow interception mass (R2
[?] 0.69), with the least variation in unexplained variance (RMSE [?] 0.91 kg), were obtained by multiplying
the ATLS-derived snow interception volume estimates by a regionally specific fresh snow density constant or
100 kg/m3 (Brazenec, 2005). A density constant of 120-125 kg/m3, a reasonable estimation for the region,
would have further improved model performance.

In contrast, ATLS-derived snow interception volume estimates in conjunction with dynamic fresh snow
density estimation equations based on air temperature reduced R2 and increased RMSE model estimates. It
may be that because equations [2-4] are empirical, they represent relationships between fresh snow density
and air temperature specific to their respective experimental locales: Sierra Nevada Mountains in California
(Diamond & Lowry, 1953); mid-continental Canadian boreal forest (Hedstrom & Pomeroy, 1998); and, a
variety of avalanche monitoring sites across the western United States (LaChapelle, 1962). Unexplained
model variance in ATLS based mass predictions may also be partially explained by the long ATLS scan
duration (13 hours). subsequent changes to the density of freshly intercepted snow (i.e. metamorphosis)
during the course of one scan, or retention of metamorphosed snow between snow events, may have resulted
in unexplained model variance. Furthermore, this study was not designed to account for losses of intercepted
snow due to wind-driven sublimation and/or unloading, processes that also may have resulted in unexplained
model variance.

The exclusive reliance on fresh snow density equations that don’t take snow metamorphosis into account
(Brazenec, 2005; Diamond & Lowry, 1953; Hedstrom & Pomeroy, 1998; LaChapelle 1962) likely contributed
to model noise and/or underestimation of predicted density /mass, and experimental development of adjust-
ment factors for these equations was not in the scope of this study. Although under- and overestimation were
minimized by conducting a sensitivity analysis to select the degree of a-convexity (see section 4.3), these



conclusions point to the need for shorter ATLS scan durations. Recent advances in lidar technology might
help to address the slow scan duration time with the relatively new availability of rugged, relatively low-cost
(< $10,000), fast scanning lidar instruments (Condliffe, 2018). Further, laser return intensity obtainable
from TLS might provide valuable insights on snow properties that affect density, such as changes in grain
size/shape and overall wetness (e.g., Eitel et al., 2016, Kaasalainen, Kaartinen, & Kukko, 2008). Although
this study emphasized automated data collection, model performance could also have been improved with
in situ density measurements of intercepted snow. Further research is of sampling snow density on trees.

4.2 The effect of weather and snow properties on model performance

TLS can detect minute changes (<10cm) in snow depth, but several factors can decrease the number and
intensity of received signals (Deems, 2013; Prokop, 2008). Atmospheric occlusion from heavy snow or fog
can interfere with lidar returns, and wet snow surfaces can lead to adsorption of lidar pulses on the target
itself (Deems, 2013; Kaasalainen, Kaartinen, & Kukko, 2008; Prokop, 2008). Snow is also strongly forward-
scattering; the proportion of forward scattering of lidar pulses increases with scan angle (Deems, 2013),
potentially leading to missed returns on the edges of targets. Despite these issues, the short distance to
target (6.2 m) and small scan angle (4.22°) should have minimized the variance between measured and
ATLS derived snow mass due to atmospheric occlusion or forward scattering. Likewise, sampling during
the coldest months should have minimized unexplained model variance or underestimation of snow volume
due to lidar pulse adsorption by snow with high water content. Although these confounding factors were
minimized, they were not entirely eliminated in this pilot study.

5. Conclusion

This study provides valuable insights into the use of TLS for estimating snow interception mass with ter-
restrial lidar data. Initial results indicate agreement between predicted and measured values of intercepted
snow mass (R2 [?] 0.69 and RMSE [?] 0.91 kg) when utilizing an a-shape convexity parameter (o) of 0.025
m and a constant snow density estimate (100 kg/m3). To further improve TLS derived snow interception
estimates, future research is needed to develop improved approaches to estimate in situ canopy intercepted
snow density, explore the sensitivity of TLS snow volume estimates to changing snow conditions and quan-
tities within the canopies of a variety of live trees of different sizes and for a range of temperatures that
affect branch flexibility, and/or reduce beam divergence and reconstruct occluded structural elements. Snow
interception is challenging to measure or model, but our findings highlight the potential of lidar technology
to efficiently and accurately estimate intercepted snow mass. This is a potentially useful development for
the collection of interception data in remote terrain, as well as the calibration of aerial lidar-based snow
interception models to distinct forest types around the globe.
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Tables and Figures

Table 1. Mean snow density estimates for the left tree in both winter sampling periods utilizing each density
estimation method [1-4] (Brazenec, 2005; Diamond & Lowry, 1953; Hedstrom & Pomeroy, 1998; LaChapelle
1962).

Table 2. Sensitivity analysis with simple linear regression results comparing predicted and measured snow
interception mass for each density estimation method [1-4] (Brazenec, 2005; Diamond & Lowry, 1953; Hed-
strom & Pomeroy, 1998; LaChapelle 1962) and o-shape convexity parameter (o) (Lafarge et al., 2014). Data
spans winters 2017-2018. Equation [1], the snow density constant (Brazenec, 2005), produced the best model



fit and lowest error for both trees. oo = 0.025 m selected because the regression utilizing the constant produced
a slope that most closely approximated a 1:1 line, calibrating the two methods by minimizing over/under
estimation in the TLS based estimates.
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