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Abstract

Cloud tomography (CT) is a promising approach in passive remote sensing using space-based imaging sensors like MISR and
MODIS. In contrast with current cloud property retrievals in the VNIR-SWIR, which are grounded in 1D radiative transfer
(RT), CT embraces the 3D nature of convective clouds. Forster et al. (2020) defined the “veiled core” (VC) of such clouds as the
optically deep region where detailed 3D structure of the cloud has little impact on the multi-angle/multi-spectral images as long
as average VC extinction and any significant cloud-scale gradient are preserved. Quantitatively, the difference between radiance
fields escaping clouds remains commensurate with sensor noise when said clouds differ only in the small-scale distribution of
extinction inside their VC. An important corollary for the large and ill-posed CT inverse problem is that the only unknowns
of interest for the whole VC are its mean and any cloud-scale vertical trend in the extinction coefficient. Another ramification
for CT algorithms under development is that the forward 3D RT model driving the inversion may be vastly simplified in the
VC to gain efficiency. We explore that possibility here, assuming radiative diffusion as the simplified RT for the VC. We also
describe the relevant RT physics that unfold in the VC and in the outer shell (OS) where detailed spatial structure does matter
for image formation. This includes control by the VC of the cloud-scale contrast between brightnesses of illuminated and
shaded boundaries, as well as the gradual blurring of spatial structure via directional diffusion with increasing optical distance
into the OS. “Transport” space is the merger of 3D (or 1D) physical space and 2D direction space. Cloud image formation
involves radiative diffusion processes (i.e., random walks) in both of these spaces, depending on what transport regime prevails.
Fortunately for the future of computed CT and of passive cloud remote sensing in general, there is a clear spatial separation:
asymptotic limit of radiative diffusion in the VC, standard RT in the OS. A hybrid forward model for CT will make use of this
fact. Reference: Forster, L., Davis, A. B., Diner, D. J., & Mayer, B. (2021). Toward Cloud Tomography from Space Using
MISR and MODIS: Locating the “Veiled Core” in Opaque Convective Clouds, Journal of the Atmospheric Sciences, 78(1),
155-166.
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Multi-angle Imaging Spectro-Radiometer
(MISR) with MODIS, on Terra

MISR o
Multi-angle Imaging SpectroRadiometer = LZ CIoud prOducts:
g R. Davies
rignt M@ N (now at U of Auckland),
B Atviard facing D.J. Diner,

V.M. Jovanovic,
C.M. Moroney,

&
3 “ Forward facing Af 26.1 B 21 M-J- Garay,
>3 cameras 3 “ul :—“' :'. ‘V KJ Mue”er,
N =% § et al.

v

* push-broom acquisition, ~400 km swath
» global coverage every 9 days
e 4 spectral channels, all VNIR Iﬁ
* 9views, 275 m pixels (always in red-channel used here)
e =7 minutes from most fore-ward to most aft-word



MODerate-resolution Imaging Spectrometer
(MODIS) with MISR, on Terra

L2 cloud products:
M.D. King,
S. Platnick,

&N

L ﬁ*y\ P. Yang,
b o .‘{./ "a

) s TR E etal
& N/ e~

A 4

* whisk-broom acquisition, ~2330 km swath

» near-global coverage every day
» 36 spectral channels, VIS/NIR/SWIR/MWIR/LWIR ﬁ
* 1 view, 0.25-0.50-1.0 km pixels (as wavelength increases)




3D cloud tomography:
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3D cloud tomography: Demonstrated!

Ground truth Reconstruction
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Levis et al. (2015): red channel only, 9 views, 20 m (=AirMSPI) resolution
— 46,656 unknowns & 315,018 unknowns, 2-step iteration scheme (1 being linearized) using SHDOM

Levis et al. (2017): VNIR multi-spectral
— basic (profile-only) microphysics (r.,v.) w/o SWIR (a la MODIS) nor polarization (a la POLDER)

Levis et al. (2020): VNIR multi-spectral/multi-polarimetric
— potential for a full 3D microphysics (N,, r., V) retrieval using polarization [/,Q,U]

— presentation by A. Levis et al.
(at session on “Advances of Atmospheric Remote Sensing Inversion”)



The “veiled core” of opaque clouds

* Problem: airborne sensors have =20 m pixels

—> space-based ones (MISR + MODIS) have =250 & 500 m pixels
- SHDOM issues: voxels can be opaque and/or internally variable

MODIS, off-nadir, or MISR
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The “veiled core” of opaque clouds

* Problem: airborne sensors have =20 m pixels

—> space-based ones (MISR + MODIS) have =250 & 500 m pixels
- SHDOM issues: voxels can be opaque and/or internally variable

The t = 5 for “VC” threshold for =5% tolerance is robust for clouds with
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L. Forster, A. B. Davis, B. Mayer, and D. J. Diner (2020), Toward Cloud Tomography from Space
using MISR and MODIS: Locating the “Veiled Core” in Opaque Convective 3D Clouds,
J. Atmos. Sci. (in press). https://arxiv.org/abs/1910.00077
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Cloud image formation in VNIR+SWIR:
A tale of two diffusions

random walks unfold on the 4 random walks unfold in 3D
unit sphere (i.e., direction space) physical space
in the outer shell (OS) * in the veiled core (VC)
gradual loss of directional memory e gradual loss of positional memory
small-scale details in OS matter * ' cloud-scale gradients in VC matter
results in identifiable “features” +* controls “contrast” between sunny and
in cloud imagery shaded sides

» extinction and Beer’s law » scaled/transport extinction

» forward-peaked scattering » effective isotropic scattering

» small-angle approximation » diffusion approximation

A. B. Davis, L. Forster, D. J. Diner, and B. Mayer (2020), Toward Cloud Tomography from Space
using MISR and MODIS: The Physics of Image Formation for Opague Convective Clouds,
J. Atmos. Sci. (in preparation, preprint forthcoming at https://arxiv.org/abs/2011.14537).
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Cloud image formation in VNIR+SWIR:
A tale of two diffusions

Diffusion process #1 & #2 [or #1 & #3]:
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Cloud image formation in VNIR+SWIR:
A tale of two diffusions

Diffusion process #1 & #2 [#3]: 1 Free-Path Distribution Scattering Phase Function
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Cloud image formation in VNIR+SWIR:
< Atale of two diffusions

Diffusion process [#2]:

What happens to the now close-to-isotropic and already

* random walks unfold somewhat-dispersed forward- or backward-propagating
in 3D physical space solar radiation when it reaches the veiled core (VC)?

* inthe veiled core
e gradual loss of
positional memory

Characteristic diffusion
scale Lg:
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Let: H, = bulk size of VC; 7, = mean optical thickness of VC;
and <p?>1/2 = RMS lateral transport along VC boundary, from
entrance to escape. We know that for ...

* sensor on illuminated side [Davis et al., 1999ab]

<p*>12~ Ho/[(1-9) 7]V
— more opaque the VC, less the light will travel;

* sensor on opposite side [Davis & Marshak, 2002]
<?>12~ H, (irrespective of 7,c and g)

- light can escape from anywhere.
v 0 MODIS
5 - Reference vs. modified center (9° off-nadir)
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- the VC grows
with absorption
in MODIS’ SWIR
channels



Tomography initialization:
: Roughly estimate mean extinction ... quickly!

Reference Koch cloud, SZA=60"
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Tomography forward model:
Need high accuracy ... and efficiency!

Diffusion process #1 & #2 [#3]:

Hybrid RT: Implementation in 1D
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equation solver

Diffusion process [#2]:®

* random walks unfold in
3D physical space

* inthe veiled core

e gradual loss of

positional memory

efficient diffusion

equation solver

- Use best of both worlds in a
hybrid forward 3D RT model!

>

Hybrid RT: Possible Implementation in 3D
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Summary & Outlook

» 3D cloud tomography using multi-angle, multi-spectral, and
multi-pixel data collected from current and future space-based
sensors is a challenge.

— Need adapted forward model (faster 3D RT solver)
— Need informed inverse problem formulation/solution

+»*Definition of veiled core (VC) and its outer shell (OS) are key!

» Deep dive into the physics of VNIR and SWIR cloud image
formation, looking for insights ...

* We uncover two complementary diffusion processes:

s First (in OS, near source) and last (in OS, near sensor) are directional
random walks on the 2D sphere that end either in reflection or at the VC,
with less and more dispersion, respectively. = pixel-scale “features”

**In the VC, solar radiation is transported by a standard positional
random walk in 3D space that ends either in reflection or in transmission,
with less and more dispersion, respectively. 2 cloud-scale “R/T” contrast

» This learning applies to any passive observation of clouds in the
solar spectrum ... naked eyes included!
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A Necessary Step Toward Cloud Tomography from Space using MISR and MODIS:
Understanding the Physics of Opaque 3D Cloud Image Formation

passive cIoud remote sensing in the solar spectrum.
That said, there are good reasons to continue to use
the ensuing bi-spectral (Nakajima & King, 1990)
algorithm based on 1D radiative transfer (RT):

* something has to be done about every cloudy pixel, and they are produced at such a rate
that it has to be really simple;
 some important cloud types (eg, marine strato-cumulus) are reasonably well approximated,
e even if the retrievals are often biased, per DS17, we need to maintain a program-of-record.
That said, we will reinvent VNIR+SWIR cloud remote sensing for 3D convective clouds based on ...



... physical insights into cloud image formation.

Namely, that cloud imagery is shaped by 2 complementary diffusion processes:

e 5 P
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To broaden passive VNIR+SWIR cloud remote sensing past stratiform ones, we need
full 3D tomographic reconstructions of their convectively-driven counterparts.

Bi-spectral method: 2 (VIS+SWIR) radiances per pixel = 2 cloud properties (optical depth, effective particle size)
Cloud tomography: multi-angle/bi-spectral images =2 ~10%° to~10°> unknown extinction values, plus microphysics

Demonstrated on LES clouds (known truth) and Air[borne]MSPI data (~20 m voxels/pixels) by Levis et al. (2015, 2017, 2020),
but space-based (MISR+MODIS) imagers have 250 to 500 m pixels. These pixels will generally be optically thick and hetero-
generous, in patent violation of the assumptions in the current forward model in cloud tomography, SHDOM (Evans, 1996)!

We need: (1) new 3D radiative transfer forward model, and (2) new formulation of the large ill-posed inverse problem
Starting with: physical insights into exactly how cloud images are formed at solar (VNIR+SWIR) wavelengths = DONE!

This study will enable 3D convective cloud tomography using ...
... existing, and ... ... future sensors.

NB. Present learnings
¥ apply to all manner of

Vo,
.”/ solar cloud sensing,
naked eyes included.

e

e S,

multi-angle VIS images (275 m pix)

Science drivers: aerosol, cloud, convection, and precipitation interactions (ie, DS17 A-CCP theme)
For further information, contact Anthony Davis anthony.b.davis@jpl.nasa.gov © 2020. Al rights reserved.
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