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Abstract

Forest biodiversity has been declining across the globe due to anthropogenic activities. Losses of biodiversity have led to reduced

forest health and ecosystem services. Therefore, it has become necessary to monitor changes in biodiversity over wide geographic

areas. Remote sensing has the potential to monitor biodiversity changes, but the accuracy in which it can be estimated is under

debate. In this study, we tested 1) the relationship among distinct metrics of biodiversity, 2) the role topographic measures

have on determining biodiversity, and 3) the ability of hyperspectral remote sensing to estimate biodiversity in temperate

forests of the Northeastern United States. We characterized biodiversity according to four different metrics: species, functional,

structural, and phylogenetic diversity. All four metrics were quantified using species inventory data as well as Light Detecting

and Ranging (LiDAR) to calculate additional indices of structural diversity. A digital elevation model was used to obtain

measures of slope, aspect, and other topographic indices such as topographic wetness. Hyperspectral imagery was used to

obtain reflectance, entropy, and several vegetation indices. In our analyses, species, functional, and phylogenetic diversity were

shown to be moderately correlated suggesting similarities between the metrics while correlations between structural diversity

and the other metrics were weak. The calculated topographic indices also showed weak correlations with the biodiversity metrics

suggesting that topography does not influence measures of biodiversity at the plot level. Depending on the biodiversity metric,

relationships between the hyperspectral analyses and biodiversity were weak to moderately strong. These findings suggest that

hyperspectral imagery holds some potential for estimating multiple metrics of biodiversity.
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Introduction

• Ecosystems are experiencing losses in biodiversity due to anthropogenic 

actives such as logging, agriculture, and urbanization

• Biodiversity has been shown in some communities to help support the 

productivity and the stability of the ecosystem

• The way in which biodiversity is quantified depends on the research 

topic. Most studies focus on estimating species richness, but biodiversity 

can also be characterized through the diversity of functional traits, 

phylogenetics, and structure.   

• Estimating biodiversity through field surveys is difficult as they can be 

costly and time consuming and many areas of interest are inaccessible

• Some studies have shown that remote sensing can be used to estimate 

biodiversity with coarse spatial resolutions and over large areas, but few 

have looked at estimating biodiversity on small plot levels and fine 

spatial scales 

Objectives

1. Look at the different ways in which biodiversity can be quantified and 

test the similarity between the metrics.

1. Test the potential of estimating the different metrics of biodiversity 

from fine spatial resolution, hyperspectral imagery and Light Detecting 

and Ranging (LiDAR) data

Relatedness of Biodiversity Indices

Estimating Biodiversity from Remote Sensing

Methods

Bartlett 

Experimental 

Forest

Study Site

• Bartlett Experimental Forest (BEF) 

o Bartlett NH, USA (Figure 1)

• 1,052 hectare, northern-hardwood forest

• Contains 400+, evenly spaced 32m by 32m 

inventory plots

• Most recent publicly available species inventory 

was collected in 2001to 2003

• SpecTIR hyperspectral imagery collected in 

2014 

o Spatial resolution = 5m 

o Spectral resolution = 400 to 2500nm; 360 bands

• 2014 LiDAR collected from the National 

Ecological Observatory Network (NEON)

• Species Diversity 
o Shannon’s Index 

(sp.shannon)

o Richness (sp.richness)

o Peilou J Evenness 

(sp.evenness)

o Functional Diversity
o Richness (FRic)

o Evenness (FEve)

o Divergence (FDiv)

o Dispersion (FDis)

o Rao’s Quadradic 

Entropy (RaoQ)

• Phylogenetic Diversity 
o Faith’s PD (PD)

o Variability (PSV)

o Richness (PSR)

o Evenness (PSE)

o Clustering (PSC)

• Structural Diversity
o Standard deviation 

(sd) of DBH (sd_dbh)

o Stand density 

(StanDen) 

Remote Sensing Analyses

• Hyperspectral 
o Entropy of spectra

o Reflectance

o Vegetation indices 

o Gray-Level Co-

Occurrence Matrix 

(GLCM) 

• LiDAR
o Rumple

o Shannon Index of 

height profile

o Max and sd height 

Biodiversity Indices

Figure 1: Approximate Location 

of Bartlett Experimental Forest 

in New Hampshire, USA

Figure 2 (left): 

An example 

simple linear 

regression 

between RaoQ’s

entropy index for 

functional 

diversity and 

Shannon’s index 

for species 

diversity. Overall, 

relationships 

between 

biodiversity 

metrics were 

found to be 

weakly correlated. 

Figure 4: Linear regressions were used to see how the biodiversity 

metrics could be estimated from the remote sensing analyses. All 

relationships were showed weak correlations, with the strongest 

correlation being between functional diversity and reflectance. 

Colors represent groups made by the dendrogram in the next section

Influence of Canopy Structure and Function

Source Log Worth PValue

StandDensity 8.301 0.0000

fd_RaoQ 7.564 0.0000

rumple 5.295 0.0000

PSV 3.578 0.0003

fd_FDiv 2.184 0.0065

mean_height 1.074 0.0843

fd_FEve 0.975 0.1059

sp.richness 0.698 0.2005

sp.shannon 0.638 0.2299

Select Biodiversity Indices 
with Total Reflectance 

Select Biodiversity Indices and % 
Broadleaf Cover with Total Reflectance

Source Log Worth PValue

%broadleaf 25.650 0.0000

StandDensity 4.067 0.0001

rumple 3.377 0.0004

sp.shannon 2.419 0.0038

PSV 0.984 0.1037

fd_FEve 0.643 0.2278

mean_height 0.474 0.3360

sp.richness 0.311 0.4891

fd_FDiv 0.218 0.6059

fd_RaoQ 0.085 0.8226Figure 7: Standard 

least squares (SLS) 

analysis looking at 

the effect of the 

biodiversity metrics 

on reflectance. 

Table 1: The effect 

summary of each for 

the biodiversity 

metrics showing each 

variable’s effect on 

reflectance

Figure 8: SLS 

analysis again but 

also accounting for 

the percent broadleaf 

coverage of the plots

Table 2: The effect 

summary of each for 

the biodiversity 

metrics 

Figure 3 (below): Since the biodiversity indices 

used to calculate the four main metrics of diversity 

were similar, indices were grouped together based 

on the strength of their correlations. From there, 

an index from each group was selected to 

represent the other indices in future analyses. 
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Figure 5: Linear regression between 

species and functional diversity across 

the United States using data from 

Fluxnet showing stronger relationships 

between metrics at broad scales. 

Relationships Compared at Larger Scales

Figure 6: Linear regression between mean 

NIR reflectance from NAP and functional 

diversity showing similar strength 

relationships between biodiversity and 

remote sensing at broad scales. 

• Strength of relationships between 

biodiversity metrics improve as scale 

broadens.

• Estimates from remote sensing at fine and 

broad scales both show weak correlations.

• The influence of function and structure on 

reflectance suggests that both these variables 

are working together as drivers of reflectance

• The influence of broad leaf coverage is an 

example of potential outside influences that 

aren’t accounted for when looking at diversity 

alone. Other influences looked at include 

management history and topography. 

Takeaways
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