Measuring Forest Biodiversity on the Ground and in the Air: Comparing Biodiversity Estimates from Ground-Based Surveys and Areal Imagery

Kaitlyn Baillargeon¹, Scott Ollinger², Andrew Ouimette³, Rebecca Sanders-DeMott³, Franklin Sullivan³, and Olivia Bartlett¹

¹University of New Hampshire Main Campus ²Earth Systems Research Center, University of New Hampshire ³University of New Hampshire

November 24, 2022

Abstract

Forest biodiversity has been declining across the globe due to anthropogenic activities. Losses of biodiversity have led to reduced forest health and ecosystem services. Therefore, it has become necessary to monitor changes in biodiversity over wide geographic areas. Remote sensing has the potential to monitor biodiversity changes, but the accuracy in which it can be estimated is under debate. In this study, we tested 1) the relationship among distinct metrics of biodiversity, 2) the role topographic measures have on determining biodiversity, and 3) the ability of hyperspectral remote sensing to estimate biodiversity in temperate forests of the Northeastern United States. We characterized biodiversity according to four different metrics: species, functional, structural, and phylogenetic diversity. All four metrics were quantified using species inventory data as well as Light Detecting and Ranging (LiDAR) to calculate additional indices of structural diversity. A digital elevation model was used to obtain measures of slope, aspect, and other topographic indices such as topographic wetness. Hyperspectral imagery was used to obtain reflectance, entropy, and several vegetation indices. In our analyses, species, functional, and phylogenetic diversity were shown to be moderately correlated suggesting similarities between the metrics while correlations between structural diversity and the other metrics were weak. The calculated topographic indices also showed weak correlations with the biodiversity metrics suggesting that topography does not influence measures of biodiversity at the plot level. Depending on the biodiversity metric, relationships between the hyperspectral analyses and biodiversity were weak to moderately strong. These findings suggest that hyperspectral imagery holds some potential for estimating multiple metrics of biodiversity.

Introduction

- Ecosystems are experiencing losses in biodiversity due to anthropogenic actives such as logging, agriculture, and urbanization
- Biodiversity has been shown in some communities to help support the productivity and the stability of the ecosystem
- The way in which biodiversity is quantified depends on the research topic. Most studies focus on estimating species richness, but biodiversity can also be characterized through the diversity of functional traits, phylogenetics, and structure.
- Estimating biodiversity through field surveys is difficult as they can be costly and time consuming and many areas of interest are inaccessible
- Some studies have shown that remote sensing can be used to estimate biodiversity with coarse spatial resolutions and over large areas, but few have looked at estimating biodiversity on small plot levels and fine spatial scales

Objectives

Methods

Bartlett

Forest

- 1. Look at the different ways in which biodiversity can be quantified and test the similarity between the metrics.
- 1. Test the potential of estimating the different metrics of biodiversity from fine spatial resolution, hyperspectral imagery and Light Detecting and Ranging (LiDAR) data

Study Site

- Bartlett Experimental Forest (BEF) • Bartlett NH, USA (Figure 1)
- 1,052 hectare, northern-hardwood forest
- Contains 400⁺, evenly spaced 32m by 32m inventory plots
- Most recent publicly available species inventory was collected in 2001to 2003
- SpecTIR hyperspectral imagery collected in 2014
- \circ Spatial resolution = 5m
- \circ Spectral resolution = 400 to 2500nm; 360 bands
- 2014 LiDAR collected from the National Ecological Observatory Network (NEON)

Biodiversity Indices

• Species Diversity •		Phylogenetic Diversity		• Hyperspectral	
С	Shannon's Index	0	Faith's PD (PD)	0	Entropy of s
	(sp.shannon)	0	Variability (PSV)	0	Reflectance
С	Richness (sp.richness)	0	Richness (PSR)	0	Vegetation i
С	• Peilou J Evenness	0	Evenness (PSE)	0	Gray-Level
	(sp.evenness)	0	Clustering (PSC)		Occurrence
• Functional Diversity			Structural Diversity		(GLCM)
С	Richness (FRic)	0	Standard deviation	• LiD	DAR
С	Evenness (FEve)		(sd) of DBH (sd_dbh)	0	Rumple
С	Divergence (FDiv)	0	Stand density	0	Shannon In
С	Dispersion (FDis)		(StanDen)		height profi
	\mathbf{D}				

- \circ Rao's Quadradic Entropy (RaoQ)
- Colors represent groups made by the dendrogram in the next section

Measuring Forest Biodiversity on the Ground and in the Air: Comparing Biodiversity Estimates from Ground Based Surveys and Areal Imagery

Kaitlyn Baillargeon (<u>kab2014@wildcats.unh.edu</u>) Scott V. Ollinger, Andrew Ouimette, Rebecca Sanders-DeMott, Franklin Sullivan, Olivia Bartlett

Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH Institute for the Study of Earth, Oceans, and Space and Department of Earth Sciences, University of New Hampshire, Durham, NH

• The influence of function and structure on reflectance suggests that both these variables are working together as drivers of reflectance • The influence of broad leaf coverage is an example of potential outside influences that aren't accounted for when looking at diversity alone. Other influences looked at include management history and topography.