Essential Site Maintenance: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at help@authorea.com in case you face any issues.

loading page

Developing Representative Test Specimen Conditions for Rutting Mechanical Test Methods of Airfield Pavements
  • +4
  • Nicole Elias,
  • elie hajj,
  • adam hand,
  • fujie zhou,
  • thomas bennert,
  • christopher decker,
  • harsh patel
Nicole Elias
University of Nevada Reno

Corresponding Author:nelias@nevada.unr.edu

Author Profile
fujie zhou
Author Profile
thomas bennert
Author Profile
christopher decker
Author Profile
harsh patel
Author Profile

Abstract

The Federal Aviation Administration (FAA) is considering implementation of a balanced mix design method (BMD) for asphalt concrete (AC) of airfield pavements in a future specification update. One of the key elements towards implementing BMD, is setting adequate conditions for laboratory mechanical testing that best simulate actual field conditions. In this study, representative air void (AV) levels were identified for laboratory mechanical testing by analyzing quality control (QC) data of plant-mixed laboratory-compacted (PMLC) samples along with in-place density measurements for multiple existing airfield pavements. The laboratory compaction effort in the Superpave Gyratory Compactor (SGC) required to reach the recommended AV levels were evaluated for different specimen heights. The specimen height and AV level were then experimentally verified with the Ideal Rutting test (ASTM D8360-22) for these airfield mixtures. Based on analysis of field density, laboratory compaction effort, and mechanical test data, it was recommended to test 62 mm thick gyratory specimens at 7±0.5% AV (directly molded) or at 5±0.5% AV (after cutting), which should help capture the different aspects of the asphalt mixture’s resistance to rutting in terms of aggregate skeleton and binder properties.