loading page

Decoding Microbial Plastic Colonisation: Multi-Omic Insights into the Fast-Evolving Dynamics of Early-Stage Biofilms
  • +1
  • Charlotte Lee,
  • Lauren Messer,
  • Ruddy Wattiez,
  • Sabine Matallana-Surget
Charlotte Lee
University of Stirling
Author Profile
Lauren Messer
University of Stirling
Author Profile
Ruddy Wattiez
University of Mons
Author Profile
Sabine Matallana-Surget
University of Stirling

Corresponding Author:sabine.matallanasurget@stir.ac.uk

Author Profile

Abstract

Marine plastispheres represent dynamic microhabitats where microorganisms colonise plastic debris and interact. Metaproteomics has provided novel insights into the metabolic processes within these communities, however the early metabolic interactions driving the plastisphere formation remain unclear. This study utilised metaproteomic and metagenomic approaches to explore early plastisphere formation on low-density polyethylene (LDPE) over three (D3) and seven (D7) days, focusing on microbial diversity, metabolic activity, and biofilm development. In total, 2,948 proteins were analysed, revealing dominant proteomes from Pseudomonas and Marinomonas, with near-complete metagenome-assembled genomes. Pseudomonas dominated at D3, while at D7, Marinomonas, along with Acinetobacter, Vibrio, and other genera became more prevalent. Pseudomonas and Marinomonas showed high expression of reactive oxygen species (ROS) suppression proteins, associated with oxidative stress regulation, while granule formation, and alternative carbon utilisation enzymes, also indicated nutrient limitations. Interestingly, 13 alkane and other xenobiotic degradation enzymes were expressed by five genera. The expression of toxins, several type VI secretion system (TVISS) proteins, and biofilm formation proteins by Pseudomonas indicated their competitive advantage against other taxa. Upregulated metabolic pathways, including those relating to substrate transport also suggested enhanced nutrient cross-feeding within the biofilm. These insights enhance our understanding of plastisphere ecology and its potential for biotechnological applications.
30 Sep 2024Submitted to PROTEOMICS
08 Oct 2024Submission Checks Completed
08 Oct 2024Assigned to Editor
08 Oct 2024Review(s) Completed, Editorial Evaluation Pending
08 Oct 2024Reviewer(s) Assigned
31 Oct 2024Editorial Decision: Revise Minor
19 Dec 2024Review(s) Completed, Editorial Evaluation Pending
19 Dec 20241st Revision Received
19 Dec 2024Editorial Decision: Accept