loading page

Power Cable Monitoring Method Based on UHF-RFID and Deep Learning in Edge Computing Environment
  • xiongfei gu,
  • Jian Shang,
  • changlu shen
xiongfei gu
Jiayuan Technology Co.,Ltd., Division of Research and Innovation
Author Profile
Jian Shang
Jiayuan Technology Co.,Ltd., Division of Research and Innovation

Corresponding Author:shangjian@jiayuantech.com

Author Profile
changlu shen
Jiayuan Technology Co.,Ltd., Division of Research and Innovation
Author Profile

Abstract

In order to solve the problems of the current wireless cable monitoring effect is not ideal and the prediction method is difficult to deal with the nonlinear data of cables, a power cable monitoring method based on UHF-RFID and deep learning in the edge computing environment is proposed. First, based on edge computing, a power cable monitoring system is designed to migrate the analysis of massive data to the edge of the network to improve the monitoring efficiency. Then, the temperature sensing chip and RFID chip were integrated to design a UHF-RFID temperature tag, which was fixed at the cable temperature measurement point to achieve passive wireless monitoring of the cable. Finally, the parameters of the GRNN model are optimized using the beetle antennae search algorithm, and the EEMD decomposed data is input into the BAS-GRNN model for learning to output temperature prediction results and determine whether it is over temperature. The proposed method was demonstrated, and results showed that the maximum error between UHF-RFID temperature tag temperature measurement results and the thermocouple was within 0.3℃. The average relative error of the proposed method was only 0.01, and the time was 3.59s, which can meet the actual usage requirements.
01 Aug 2023Submitted to The Journal of Engineering
07 Aug 2023Submission Checks Completed
07 Aug 2023Assigned to Editor
03 Sep 2023Reviewer(s) Assigned
26 Sep 2023Review(s) Completed, Editorial Evaluation Pending
26 Oct 2023Editorial Decision: Revise Major
22 Nov 20231st Revision Received
10 Feb 2024Editorial Decision: Revise Major
03 Apr 2024Review(s) Completed, Editorial Evaluation Pending
25 Apr 20243rd Revision Received
29 Apr 2024Assigned to Editor
29 Apr 2024Submission Checks Completed
09 May 2024Review(s) Completed, Editorial Evaluation Pending
29 May 20244th Revision Received
30 May 2024Assigned to Editor
30 May 2024Submission Checks Completed
30 May 2024Reviewer(s) Assigned
30 May 2024Review(s) Completed, Editorial Evaluation Pending