Study on Bifurcation Analysis and Takagi-Sugeno Fuzzy Sampled-Data
Stabilization of PMSM Systems
Abstract
The bifurcation, stability and stabilization analysis of permanent
magnet synchronous motor (PMSM) systems are investigated in this paper.
To begin, a new class of delay-dependent sufficient conditions is
suggested with respect to the information of the membership function, a
relevant Lyapunov-Krasovskii functional (LKF), and the overall
information connected with the real sampling pattern, so that the fuzzy
system is ensured to be stable with a weighted dissipativity efficiency.
Second, sampled-data control is intended to stabilize the Takagi-Sugeno
(T-S) fuzzy system with specified integral inequalities based on the
obtained results. The required conditions are stated in terms of the
feasibility of linear matrix inequalities (LMIs) under the dissipativity
output index, and can readily be verified by MATLAB toolbox. Finally,
verification examples are contributed to demonstrated the efficacy of
the techniques established in this paper.