loading page

Ground- and Space-based Observations of Horizontally-extensive Lightning Flashes
  • Daile Zhang,
  • Kenneth. L. Cummins,
  • Phillip Bitzer
Daile Zhang

Corresponding Author:dlzhang@email.arizona.edu

Author Profile
Kenneth. L. Cummins

Corresponding Author:kcummins@email.arizona.edu

Author Profile
Phillip Bitzer

Corresponding Author:bitzerp@uah.edu

Author Profile

Abstract

Horizontally-extensive lightning flashes occur frequently in association with mature and late phases of multicellular thunderstorms, both in trailing stratiform regions and horizontally-extensive anvils. The spatial relationship between these flashes and the parent cloud volume is of importance for space launch operational decision making, and is of broader scientific interest. Before this question can be accurately addressed, there is a need to understand the degree to which current lightning observation systems can depict the spatial extent of these long flashes. In this ongoing work, we will intercompare the depiction of horizontally-extensive flashes using several ground-based lightning locating systems (LLSs) located at Kennedy Space Center (KSC) with space-based observations observed by the recently-launched Geostationary Lightning Mapper (GLM) onboard the GOES-16 satellite. Ground-based datasets include the KSC Lightning Mapping Array (KSCLMA), the operational narrowband digital interferometer network MERLIN, and the combined cloud-to-ground and cloud lightning dataset produced by the U.S. National Lightning Detection Network (NLDN). The KSCLMA system is a network of VHF time-of-arrival sensors that preferentially report breakdown processes, and MERLIN is a network of VHF interferometers that point to the discharges in the horizontal plane. Observations to date indicate that MERLIN and the KSCSLMA provide similar overall descriptions of the spatial and temporal extent of these flashes, while the NLDN does not provide adequate spatial mapping of these flashes. The KSC LMA system has much better location accuracy, and provides excellent 3-dimensional representation within ~100 km of KSC. It also has sufficient sensitivity to provide 2-dimensional flash mapping within ~250 km of KSC. The MERLIN system provides a more-detailed representation of fast leader propagation (in 2 dimensions) with ~100 km of KSC. Earlier work during the CHUVA campaign in Brazil with similar systems and the (orbital) Lightning Imaging System (LIS) has shown that the interferometric data correlated much better in space and time with the LIS optical observations. We are currently investigating this relationship at KSC, where both the LMA and interferometer perform much better than the systems used during CHUVA.