loading page

Effects of differences in aboveground dead organic matter types on the stand-scale necromass and CO efflux estimates in a subtropical forest in Okinawa Island, Japan
  • Hayato Abe
Hayato Abe
Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University

Corresponding Author:abe.hayato.360@s.kyushu-u.ac.jp

Author Profile

Abstract

[This presentation is published at https://doi.org/10.1111/1440-1703.12317] Dead organic matter (DOM), which consists of leaf litter, fine woody debris (FWD; < 3 cm diameter), downed coarse woody debris (CWDlog), and standing or suspended coarse woody debris (CWDsnag), plays a crucial role in forest carbon cycling. However, the contributions of each DOM type on stand-scale carbon storage (necromass) and stand-scale CO2 efflux (Rstand) estimates are not well understood. In addition, there is little knowledge of the effect of each DOM type on the accuracy of stand-scale estimates of total necromass and Rstand. This study investigated characteristics of necromass and Rstand from DOM in a subtropical forest in Okinawa island, Japan, to quantify the effect of each DOM type on total necromass, total Rstand, and estimate error of total necromass and Rstand. The CWDsnag accounted for the highest proportion (54%) of total necromass (1499.7 g C m–2), followed by CWDlog (24%), FWD (11%), and leaf litter (11%). Leaf litter accounted for the highest proportion (37%) of total Rstand (340.6 g C m–2 yr–1), followed by CWDsnag (25%), CWDlog (20%), and FWD (17%). The CWDsnag was distributed locally with 173% of the coefficient of variation for necromass, which was approximately two times higher than those of leaf litter and FWD (72–73%). Our spatial analysis revealed, for accurate estimates of CWDsnag and CWDlog necromass, sampling areas of ≥ 28750 m2 and ≥ 2058‒42875 m2 were required, respectively, under the condition of 95% confidence level and 0.1 of accepted error. In summary, CWD considerably contributed to stand-scale carbon storage and efflux in this subtropical forest, resulting in a major source of errors in the stand-scale estimates. In forests where frequent tree death is likely to occur, necromass and Rstand of CWD are not negligible in considering the carbon cycling as in this study, and therefore need to be estimated accurately.