loading page

Improved Lower Mekong River Basin Hydrological Decision Making Using NASA Satellite-based Earth Observation Systems
  • +1
  • Ibrahim Mohammed,
  • Raghavan Srinivasan,
  • Venkataraman Lakshmi,
  • John Bolten
Ibrahim Mohammed
NASA-GSFC

Corresponding Author:ibrahim.mohammed@nasa.gov

Author Profile
Raghavan Srinivasan
Spatial Sciences Laboratory, Texas A&M University
Author Profile
Venkataraman Lakshmi
Univ South Carolina
Author Profile
John Bolten
NASA-GSFC
Author Profile

Abstract

Better understanding of the hydrological cycle of the Lower Mekong River Basin (LMRB) and addressing the value-added information of using remote sensing data on the spatial variability of soil moisture over the Mekong Basin is the objective of this work. In this work, we present the development and assessment of the LMRB (drainage area of 495,000 km2) Soil and Water Assessment Tool (SWAT). The coupled model framework presented is part of SERVIR, a joint capacity building venture between NASA and the U.S. Agency for International Development, providing state-of-the-art, satellite-based earth monitoring, imaging and mapping data, geospatial information, predictive models, and science applications to improve environmental decision-making among multiple developing nations. The developed LMRB SWAT model enables the integration of satellite-based daily gridded precipitation, air temperature, digital elevation model, soil texture, and land cover and land use data to drive SWAT model simulations over the Lower Mekong River Basin. The LMRB SWAT model driven by remote sensing climate data was calibrated and verified with observed runoff data at the watershed outlet as well as at multiple sites along the main river course. Another LMRB SWAT model set driven by in-situ climate observations was also calibrated and verified to streamflow data. Simulated soil moisture estimates from the two models were then examined and compared to a downscaled Soil Moisture Active Passive Sensor (SMAP) 36 km radiometer products. Results from this work present a framework for improving SWAT performance by utilizing a downscaled SMAP soil moisture products used for model calibration and validation.